因此常常需要对数据进行压缩编码存储,等到要用到这个数据的时候再解压缩就行,这样不仅可以节约大量的存储空间,而且节省了系统读取和反应的时间。
栅格数据压缩编码的方法有很多种,包括链式编码、行程编码、块式编码和四叉树编码。今天我们就来讲一下行程编码(也叫游程编码)。
首先从一个简单的例子开始:编码一个在 5 * 5 方块上使用三种颜色绘制的图像。
根据方块不同的颜色匹配不同的字母。这里使用 Y 代表黄色,使用 G 代表绿色,使用 B 代表蓝色。
那么,根据这样的规则,图 1 的图形编码就变成了 25 个字母,如图 2 所示。
接下来,我们通过使用 游程编码 的方式来表示这个图像,以便使用 25 个字符以下的字符来表示。
游程编码是一种将代码和重复的次数作为一组来编码的方法。
例如,我们可以通过将第一个 “YYYY” 的部分表示未 “Y4”,这样就可以将其 缩短两个字符 。
按照这种操作,图 2 的 25 个字符就能缩短为 20 个字符了。
这样,如果我们知道每行有 5 个方块,原始图像就可以从代码中提取出来了。这种还原的操作也就是我们俗称的 解压。
当然,游程编码也不是万能的,它也有它的适用性与局限性。
观察图 4 的图像与对应的代码,可以发现:虽然使用 游程编码 使得总体的字符数减少,但对于那些不具备相同颜色的部分,在进行游程编码后,字符数反而会增加。
特别的,如果对连续性极其差的数据进行游程编码,字符数不减反增:数据翻倍到 50 个字符了。
当然,对于具有连续性的数据进行游程编码,那压缩量就十分可观了。
因此,根据要编码的数据,游程编码可能具有压缩效果,也可能不具有压缩效果。
所以,对一定数量连续的数据使用游程编码才是正确的使用时机。
再举个例子,考虑一下在单色传单上使用游程编码。
如动图 7 所示,使用 W (White)和 B(Black)字母来表示每个方块。
按照这样的逻辑,一开始只需要 25 个字符就能表示完毕。
如果使用 游程编码,那么最终的表达结果是需要 26 个字符表示。所以,在这种情况下,使用 游程编码 是没有意义的。
但仔细观察,在黑白图像中仅仅使用了黑和白这两种颜色。因此,在连续的白色方块之后必定出现的是黑色方块。那么即使没有字母 W 和字母 B,依旧可以通过代码还原恢复图像。
如图 8 所示,通过省略字母 W 和字母 B,仅仅只需要 13 个字符就能表示图像,相对于之前的需要 26 个字符表示压缩了一半的大小。
当然,这样显示是有一个要求的,那就是 代码的第一个数字必须是白色方块的连续数。只有使用了这个规则,才能通过代码还原出之前的图像。
所以,对于图 9 这种开头是黑色方块的图像的代码,需要在代码的开头处添加 0 ,这样就也遵守了 代码的第一个数字必须是白色方块的连续数这条规则。