Vorticity directions 1: self-improving property of the vorticity

在 [Li, Siran. "On Vortex Alignment and Boundedness of $ L^ q $ Norm of Vorticity." arXiv preprint arXiv:1712.00551 (2017)] 中, 作者证明了
$$\serdm{|\sin \angle(\om(x,t),\om(y,t))|\leq C|x-y|^\be\\ \om\in L^q(\bbR^3\times (0,T))}\ra \om \in L^\infty(0,T;L^q(\bbR^3)),$$
其中 $q>\f{5}{3},\ \be\in \sez{\max\sed{0,\f{5}{q}-2},1}.$


Driving Directions


DescriptionnnContrary to the popular belief, alien flying saucers cannot fly arbitrarily around our planet Earth. Their touch down and take off maneuvers are extremely energy consuming, so they carefully plan their mission to Earth to touch down in one particular place, then hover above the ground carrying out their mission, then take off. It was all so easy when human civilization was in its infancy, since flying saucers can hover above all the trees and building, and their shortest path from one mission point to the other was usually a simple straight line — the most efficient way to travel. However, modern cities have so tall skyscrapers that flying saucers cannot hover above them and the task of navigating modern city became quite a complex one. You were hired by an alien spy to write a piece of software that will ultimately give flying saucers driving directions throughout the city. As your first assignment (to prove your worth to your alien masters) you should write a program that computes the shortest distance for a flying saucer from one point to another. This program will be used by aliens as an aid in planning of mission energy requirements.nnThe problem is simplified by several facts. First of all, since flying saucer can hover above most of the buildings, you are only concerned with locations of skyscrapers. Second, the problem is actually two-dimensional — you can look at everything “from above” and pretend that all objects are situated on OXY Cartesian plane. Flying saucer is represented by a circle of radius r, and since modern cities with skyscrapers tend to be regular, every skyscraper is represented with a rectangle whose sides are parallel to OX and OY axes.nnBy definition, the location of flying saucer is the location of its center, and the length of the path it travels is the length of the path its center travels. During its mission flying saucer can touch skyscrapers but it cannot intersect them.nnAt the first picture a flying saucer of r = 1 has to get from point A to point B. The straight dashed line would have been the shortest path if not for skyscraper 1. The shortest way to avoid skyscraper 1 is going around its top right corner, but skyscraper 2 is too close to fly there. Thus, the answer is to go around the bottom left corner of skyscraper 1 for a total path length of 10.570796.nnIn the second picture it is impossible for a flying saucer of r = 2 to get from point A to point B, since all skyscrapers are too close to fly in between them.nnIn the third picture flying saucer of r = 1 has to fly in a slalom-like way around two skyscrapers in order to achieve the shortest path of length 11.652892 between A and B.nnnInputnnThe first line of the input file contains integer numbers r and n (1 ≤ r ≤ 100, 0 ≤ n ≤ 30), where r is the radius of the flying saucer, and n is the number of skyscrapers. The next line contains four integer numbers xA, yA, xB, and yB (−1000 ≤ xA, yA, xB, yB ≤ 1000), where (xA, yA) are the coordinates of the starting point of the flying saucer’s mission and (xB, yB) are the coordinates of its finishing point. The following n lines describe skyscrapers. Each skyscraper is represented by four integer numbers x1, y1, x2, and y2 (−1000 ≤ x1, y1, x2, y2 ≤ 1000, x1 < x2, y1 < y2) — coordinates of the corners of the corresponding rectangle.nnSkyscrapers neither intersect nor touch each other. Starting and finishing points of the flying saucer’s mission are valid locations for flying saucer, that is, it does not intersect any skyscraper in those points, but may touch some of them.nnOutputnnWrite to the output file text “no solution” (without quotes) if the flying saucer cannot reach its finishing point from the starting one. Otherwise, write to the output file a single number — the shortest distance that the flying saucer needs to travel to get from the starting point to the finishing point. Answer has to be precise to at least 6 digits after the decimal point.nnSample Inputnnsample input #1n1 3n2 7 7 1n3 2 6 4n7 5 9 8n1 8 5 9nnsample input #2n2 4n0 0 5 6n8 3 10 6n5 9 9 10n1 4 2 8n3 1 5 3nnsample input #3n1 2n0 5 10 5n2 2 4 5n6 5 8 8nSample Outputnnsample output #1n10.570796nnsample output #2nno solutionnnsample output #3n11.652892 问答

Street Directions


DescriptionnnAccording to the Automobile Collision Monitor (ACM), most fatal traffic accidents occur on two-way streets. In order to reduce the number of fatalities caused by traffic accidents, the mayor wants to convert as many streets as possible into one-way streets. You have been hired to perform this conversion, so that from each intersection, it is possible for a motorist to drive to all the other intersections following some route. nnYou will be given a list of streets (all two-way) of the city. Each street connects two intersections, and does not go through an intersection. At most four streets meet at each intersection, and there is at most one street connecting any pair of intersections. It is possible for an intersection to be the end point of only one street. You may assume that it is possible for a motorist to drive from each destination to any other destination when every street is a two-way street. nInputnnThe input consists of a number of cases. The first line of each case contains two integers n and m. The number of intersections is n (2 <= n <= 1000), and the number of streets is m. The next m lines contain the intersections incident to each of the m streets. The intersections are numbered from 1 to n, and each street is listed once. If the pair i j is present, j i will not be present. End of input is indicated by n = m = 0. nOutputnnFor each case, print the case number (starting from 1) followed by a blank line. Next, print on separate lines each street as the pair i j to indicate that the street has been assigned the direction going from intersection i to intersection j. For a street that cannot be converted into a one-way street, print both i j and j i on two different lines. The list of streets can be printed in any order. Terminate each case with a line containing a single `#' character. nnNote: There may be many possible direction assignments satisfying the requirements. Any such assignment is acceptable. nSample Inputnn7 10n1 2n1 3n2 4n3 4n4 5n4 6n5 7n6 7n2 5n3 6n7 9n1 2n1 3n1 4n2 4n3 4n4 5n5 6n5 7n7 6n0 0nSample Outputnn1nn1 2n2 4n3 1n3 6n4 3n5 2n5 4n6 4n6 7n7 5n#n2nn1 2n2 4n3 1n4 1n4 3n4 5n5 4n5 6n6 7n7 5n# 问答

City Directions


DescriptionnnWhen driving through a city, an intersection usually offers one the choice of going straight on or turning left or right through 90 degrees. However some cities have diagonal roads, thus at intersections involving these one may be able to turn through 45 degrees (``half'') or through 135 degrees (``sharp''). nnnConsider such a city with Avenues running north-south, Streets running east-west and Boulevards running diagonally. The central Avenue and Street are labelled Zero (A0 and S0). Other roads are labelled relative to these, thus A3W is the third avenue to the west of A0. There are 6 Boulevards--two passing through the centre of the city, and 4 others, one in each quadrant. The diagram below shows the northwest quadrant of a small version of such a city. nn![](http://poj.org/images/1210_1.jpg)nnThe roads marked in grey are considered to be throughways. These are elevated for most of their length, thus it is possible to cross them easily, however they always intersect each other at a circle, which is shared by all other roads that meet at that intersection. You may only enter or leave them by turning left (sharp left in the case of boulevards). You may not stop on them for any reason. There are no restrictions on turns for other roads. nnnThis system allows a very simple method of determining one's current position and a way of arriving at one's destination. Position can be specified in terms of the last intersection you passed through (the numbers of the Avenue and Street that meet there) and your current heading, which can be one of: north (N), northeast (NE), east (E), southeast (SE), south (S), southwest (SW), west (W) and northwest (NW). Directions can then be given in terms of how many intersections to pass through and which turns to make. However, the locals have an infuriating habit of giving incorrect or invalid directions, although it cannot be determined whether this is deliberate or accidental. Directions should (but don't always) conform to the following simple grammar: n< command > ::= < turn_command > | < straight_command > n< turn_command > ::= TURN [HALF | SHARP] LEFT | RIGHT n< straight_command > ::= GO [STRAIGHT] n <= n <= 99 nWrite a program that will simulate driving through such a city, by tracking your position and heading as you follow a set of directions (commands). Each quadrant of the city will be 50 blocks by 50 blocks, thus the entire city will be 100 blocks by 100 blocks, the outer throughways will be labelled Fifty and the major and minor boulevards will cross at roads labelled Twentyfive. You will be told your starting position and heading and then given a series of directions. If a direction does not follow the above grammar, or would involve an illegal or impossible turn then ignore it. At no stage will directions take you out of the confines of the city. nnInputnnInput will consist of a series of scenarios. nnEach scenario will consist of a position and a heading and will be followed by a series of directions (commands), each on a separate line. If either of the roads involved is one of the central roads (A0, S0), they will be labelled N or E as appropriate. Note that you may assume that you have just left the intersection specified. The GO < n > command means that you pass through < n > intersections. nnEach scenario will be terminated by a line consisting of the word STOP. nnThe file will be terminated by a line consisting of the word END only. nnnInput data will follow the format shown below, except that more than one space may occur where only one is shown. No line will be longer than 80 characters. nOutputnnOutput will consist of a series of lines, one for each scenario. Each line will consist of a position and a heading in the same format as the input. If the final stopping place is illegal, report `Illegal stopping place' as the answer.nSample InputnnA2W S1N EnTURN SHARP LEFTnGO 1nTURN RIGHTnTURN LEFTnTURN SHARP LEFTnGO 1nTURN LEFTnSTOPnA2W S1N WnGO STRAIGHT 2nTURN LEFTnGO ON 2nTURN HALF LEFTnTURN LEFTnGO 2nSTOPnENDnSample OutputnnA3W S1N EnIllegal stopping place 问答

Check the result mapping for the 1 property


各位大虾,小弟这两天为这个问题寝食难安。万恶的IBM。rn  rn websphere6.1+DB2 v9.1+ibatis2.3.4rn  rn 配置文件如下:rn sqlmapconfig.xml :rn  rn                                          rn  rn  rn FundManager.xml:rn  rn rn          SELECT  count(1)  FROM  tables  rn  rn FundManagerDAO .java :rn public class FundManagerDAO  public static SqlMapClient sqlMap;  public static Map userNameMap = new HashMap();rn  static   String internalException = null;   try       Reader reader = Resources.getResourceAsReader("com/eclipselite/bank/memfis/mf/sqlmap/SqlMapConfig.xml");       sqlMap = SqlMapClientBuilder.buildSqlMapClient(reader);       reader.close();    catch (IOException e)    e.printStackTrace();     internalException = e.toString();         if(sqlMap == null)    throw new RuntimeException("Something bad happened while building the sqlMapperSpain instance." , new Exception(internalException));         public static void main(String[] args)   try    System.out.println(getTotalNoOfFundManagers(null)) ;    catch (SQLException e)    // TODO Auto-generated catch block    e.printStackTrace();       rn  public static int getTotalNoOfFundManagers(FundManagerDom dom) throws SQLException         Date beginDate = new Date();   int i = 0;   try    sqlMap.startTransaction();    i = (int)MemfisGenUtility.checkInteger(sqlMap.queryForObject("getTotalNoOfFundManagers",dom));    catch (SQLException e)    e.printStackTrace();    throw e;   finally    try     sqlMap.commitTransaction();     catch (SQLException e)     e.printStackTrace();     throw e;        try     sqlMap.endTransaction();     catch (SQLException e)     e.printStackTrace();     throw e;             return i;        public List getFundManagers(FundManagerDom fmDom) throws SQLException    int pageNo = fmDom.getPageNo();   Date beginDate = new Date();   List list;   try    sqlMap.startTransaction();     list =  this.sqlMap.queryForList("getFundManagers",fmDom, (pageNo-1)*30, 30);    sqlMap.commitTransaction();   catch (SQLException e)    e.printStackTrace();    throw e;   finally    try     sqlMap.commitTransaction();     catch (SQLException e)     e.printStackTrace();     throw e;        try     sqlMap.endTransaction();     catch (SQLException e)     e.printStackTrace();     throw e;            return list;       rn  rn  rn  rn 小弟单独DEBUG运行 木友问题 可以查出条数,但是部署在websphere6。1 之后就报如下错误:rn  rn  rn n n Error Descriptionrnn n rn  com.eclipselite.bank.memfis.common.util.MemfisException : com.ibatis.common.jdbc.exception.NestedSQLException: --- The error occurred in com/eclipselite/bank/memfis/mf/sqlmap/FundManager.xml. --- The error occurred while applying a result map. --- Check the getTotalNoOfFundManagers-AutoResultMap. --- Check the result mapping for the ‘1’ property. --- Cause: com.ibm.db2.jcc.a.SqlException: DatabaseMetaData information is not known for server DB2DSN09015 by this version of JDBC driverrn  rn .rn  rn 渴求各位大拿,感激不尽。rn  rnrnn n  rnn 问答