离线数据分析流程及推荐系统架构图

原文链接:http://www.cnblogs.com/ahu-lichang/p/6755583.html

1、离线数据分析流程

一个应用广泛的数据分析系统:“web日志数据挖掘”

1.1 需求分析

1.1.1 案例名称

“网站或APP点击流日志数据挖掘系统”

 

1.1.2 案例需求描述

Web点击流日志”包含着网站运营很重要的信息,通过日志分析,我们可以知道网站的访问量,哪个网页访问人数最多,哪个网页最有价值,广告转化率、访客的来源信息,访客的终端信息等。

 

1.1.3 数据来源

本案例的数据主要由用户的点击行为记录

获取方式:在页面预埋一段js程序,为页面上想要监听的标签绑定事件,只要用户点击或移动到标签,即可触发ajax请求到后台servlet程序,用log4j记录下事件信息,从而在web服务器(nginxtomcat等)上形成不断增长的日志文件。

形如:

58.215.204.118 - - [18/Sep/2013:06:51:35 +0000] "GET /wp-includes/js/jquery/jquery.js?ver=1.10.2 HTTP/1.1" 304 0 "http://blog.fens.me/nodejs-socketio-chat/" "Mozilla/5.0 (Windows NT 5.1; rv:23.0) Gecko/20100101 Firefox/23.0"

1.2 数据处理流程

1.2.1 流程图解析

本案例跟典型的BI系统极其类似,整体流程如下:

 

但是,由于本案例的前提是处理海量数据,因而,流程中各环节所使用的技术则跟传统BI(商业智能)完全不同,后续课程都会:

1) 数据采集:定制开发采集程序,或使用开源框架FLUME

2) 数据预处理:定制开发mapreduce程序运行于hadoop集群

3) 数据仓库技术:基于hadoop之上的Hive

4) 数据导出:基于hadoopsqoop数据导入导出工具

5) 数据可视化:定制开发web程序或使用kettle等产品(echarts)

6) 整个过程的流程调度:hadoop生态圈中的oozie工具或其他类似开源产品

 

1.2.2 项目技术架构图

1.2.3 项目相关截图(感性认识)

a) Mapreudce程序运行

a) Hive中查询数据

a) 将统计结果导入mysql

./sqoop export --connect jdbc:mysql://localhost:3306/weblogdb --username root --password root  --table t_display_xx  --export-dir /user/hive/warehouse/uv/dt=2014-08-03

 

1.3 项目最终效果

经过完整的数据处理流程后,会周期性输出各类统计指标的报表,在生产实践中,最终需要将这些报表数据以可视化的形式展现出来,本案例采用web程序来实现数据可视化

效果如下所示:

 

 

 

 

2、推荐系统架构图

 

转载于:https://www.cnblogs.com/ahu-lichang/p/6755583.html

展开阅读全文
博主设置当前文章不允许评论。

电商推荐系统_基于内容的离线推荐模块(下)

05-15

<span style="color:#404040;">如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。</span><br /><br /><span style="color:#404040;">打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。</span><br /><br /><span style="color:#404040;">整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。</span><br /><br /><span style="color:#404040;">适合人群:</span><br /><span style="color:#404040;">1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br /><span style="color:#404040;">2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br /><span style="color:#404040;">3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员</span><br /><span style="color:#404040;">4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员</span>

电商推荐系统_基于ItemCF的离线推荐(下)

05-15

<span style="color:#404040;">如今大数据已经成了各大互联网公司工作的重点方向,而推荐系统可以说就是大数据最好的落地应用之一,已经为企业带来了可观的用户流量和销售额。特别是对于电商,好的推荐系统可以大大提升电商企业的销售业绩。国内外的知名电商,如亚马逊、淘宝、京东等公司,都在推荐系统领域投入了大量研发力量,也在大量招收相关的专业人才。</span><br /><br /><span style="color:#404040;">打造的电商推荐系统项目,就是以经过修改的中文亚马逊电商数据集作为依托,并以某电商网站真实的业务架构作为基础来实现的,其中包含了离线推荐与实时推荐体系,综合利用了协同过滤算法以及基于内容的推荐方法来提供混合推荐。具体实现的模块主要有:基于统计的离线推荐、基于隐语义模型的离线推荐、基于自定义模型的实时推荐,以及基于内容的、和基于Item-CF的离线相似推荐。</span><br /><br /><span style="color:#404040;">整个项目具有很强的实操性和综合性,对已有的大数据和机器学习相关知识是一个系统性的梳理和整合,通过学习,同学们可以深入了解推荐系统在电商企业中的实际应用,可以为有志于增加大数据项目经验的开发人员、特别是对电商业务领域感兴趣的求职人员,提供更好的学习平台。</span><br /><br /><span style="color:#404040;">适合人群:</span><br /><span style="color:#404040;">1.有一定的 Java、Scala 基础,希望了解大数据应用方向的编程人员</span><br /><span style="color:#404040;">2.有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员</span><br /><span style="color:#404040;">3.有电商领域开发经验,希望拓展电商业务场景、丰富经验的开发人员</span><br /><span style="color:#404040;">4.有较好的数学基础,希望学br习机器学习和推荐系统相关算法的求职人员</span>

没有更多推荐了,返回首页