互联网+与人工智能的一些思考


1.互联网+前景黯淡:

互联网的流量红利已经消失

以 PC 来说,全球 PC 出货量连续 5 年下滑。中国连续两年手机出货量都在 5 亿多台,增长放缓,代表无线流量基本已走平,你多卖一台,我就少卖一台,是存量竞争。今天创业者再做一个纯互联网的 APP,投资人问的第一个问题就是你怎么获客。因为现阶段流量格局已定,首屏就那几个 APP。


互联网最大的价值,是解决信息不对称和连接。

很多行业信息和连接并不是痛点

中国三甲医院的大夫就那么多,你把全国 13 亿人民都和这些大夫连接上了也没用,因为一个医生一天还是只能看那么多病人。互联网并没有提高医生看诊的效率。在诸如餐饮、医疗这些传统领域,互联网的帮助是很有限的。

滴滴打车,互联网解决了打车难的问题,但是没解决打车价格的问题。事实上,补贴去掉之后,大家都发现了滴滴一点都不便宜,道理很简单——不管是专车还是出租车,还是需要由人来开,人工成本降不下来,就不可能便宜。


真正能够提高社会生产力,解决供需关系不平衡的就是人工智能

拿医疗来说,很多基层医院水平不高,那未来完全可以通过人工智能来辅助医生读 CT、X 光等医疗影像。像今年,IBMWatson 对皮肤黑色素瘤的诊断,准确率已提高至 97%,远远超过了人类专家 75%-84% 的平均水平。


软件工程未来的希望在哪儿?

最底层:

芯片
显卡(GPU / TPU)
Openstack,Spark,Hadoop框架 --> 云计算/分布式系统 
Caffe,Tensorflow框架 --> 人工智能
当下较为前端的开源技术,但是掌握了并不代表懂得其中的原理。

中间层:

图像识别、语音识别、语义理解、机器翻译 --> 建立在 概率论,线性代数,微积分,信号与系统 等理论课基础之上。

芯片领域,Intel、英伟达、高通都投入巨资,竞争极其激烈。
对于中间层的通用技术,BAT 也极其重视,目前以技术出身的百度占了上风。


BAT 的最大优势是什么呢?

第一,不缺数据;
第二,为了构建自己的生态系统,未来通用技术一定全部是免费的;
第三,虽然通用技术免费,但 BAT 有羊毛出在羊身上的机会。这是典型的互联网打法。

例如百度的 ABC 策略,分别代表人工智能(AI)、大数据(Big Data)和云计算(Cloud Computing)。AI 我可以不赚钱,开放给大家,那么大家想享受我的AI服务,就来买我的云服务吧。PS: 可以理解为AI+云计算的捆绑销售。

对于创业企业来说,只做图像识别、语音识别、语义理解、机器翻译这些通用技术,指望通过 SDK 卖钱,未来路会越来越窄,特别是 BAT 都免费的压力下。

未来行业壁垒才是人工智能创业最大的护城河。因为每个行业都有垂直纵深, 尽管 BAT 技术好一点、并不关键。拿医疗 + AI 举例,什么最重要?大量准确的被医生标注过的数据最重要。没有数据,再天才的科学家也无用武之地。(人脉还有行业资源,长期的合作伙伴关系还有用户对你的产品的依赖,更换产品高昂的成本)


技术不敏感,不占主导地位的领域中需要这些东西:

1.对行业的洞察理解。要熟知行业痛点;
2.产品和工程化能力。光在实验室里搞没意义;(算法和工程能力相结合)
3.成本控制。不光能做出来的产品,还得便宜的做出来;
4.供应链能力。不光能出货,还要能批量生产;(线上线下的结合能力)
5.营销能力。产品出来了,你得把东西卖出去。团队里有没有营销高手,能不能搞定最好的渠道是关键。 (懂得如何宣传你的产品)


为什么说未来只做技术提供商价值会越来越小?

  1. 首先通用技术一定是大公司的赛道,BAT 未来一定会开放免费。
  1. 依托于算法的技术壁垒会越来越低。

随着谷歌 TensorFlow 等生态系统的成熟,很多领域都会有训练好的模型可以用来参考(出 Demo 会更快),创业者只要有足够的数据来训练参数就好了。所以未来算法的壁垒会越来越低,如果这个公司的核心竞争力只是算法,那将非常危险。

  1. 技术提供商如果不直接面向用户 / 客户提供整体解决方案,则非常容易被上下游碾压:

即使在有一定技术门槛的行业,技术提供商的日子同样并不好过。比如专注嵌入式的视觉处理芯片的 Movidius,大疆无人机一直在用他们的芯片。但自从大疆统治了消费级无人机市场后,大疆现在也很自然地开始研发自己的芯片。


市场空间够不够大?

拿美图公司举例,他们有美图秀秀、美拍、美颜相机等 APP,同时还会跟很多手机厂商合作,提供相机拍摄的美颜效果,你可以理解这就是技术服务。

但是以上提到的技术服务都远没有垂直做美图手机赚钱。美图手机占了公司全部营收的 93%。虽然美图手机去年的销量大约在 74.8 万台,仅仅只占国内手机市场全年销量 5 亿多台的不足 0.15%。


行业集中度如何?

以云计算为例,提供云计算的厂商就那几个,两只手就能数出来。而且头部效应极其明显,仅阿里云一家占了 50% 以上份额。如果你是一个技术提供商,在跟这么垄断的行业去谈判,你会发现没有任何筹码。所以现在就很悲催,假设我是阿里云,会让你列出 BOM 成本,我就给你 5% 或 10% 的利润,这个生意就很难做了。


TO C OR TO B ?

科技成熟都需要一定的时间。因为从任何技术普及演进的角度,几乎都延续了先是从军工(航天)、到政府、到企业、到 B2B2C、再到 2C 这个规律。人工智能也一样,目前人工智能在 2C 市场还不是很成熟。

在个人消费者市场,出货量大的机器人只有 4 类产品:扫地机器人、无人机、STEAM 教育类机器人和亚马逊 ECHO 为代表的智能音箱。

主要原因如下:

  1. 2B 端对价格承受能力更高
  2. 2B 的核心目的是降成本(有相应的回报来弥补高昂的成本)
  3. 2B 可以采取人机混合模式

未来随着技术门槛的降低,特别在 “非关键应用” 领域里,团队的核心主导,会慢慢过渡到产品经理和行业专家为主,因为他们离用户需求最近。“非关键应用” 领域,懂需求比技术实现更重要。

没有更多推荐了,返回首页