grape=read.csv('d:/grape.csv') #葡萄数据
grape
grape=as.matrix(grape[,-1])
claret=read.csv('d:/claret.csv') #葡萄酒数据
claret
claret=as.matrix(claret[,-1])
x=grape
y=claret
x0=scale(x)
x0
y0=scale(y)
y0
m=t(x0)%*%y0%*%t(y0)%*%x0
m
eigen(m)
w1=eigen(m)$vectors[,1]
w1
v1=t(y0)%*%x0%*%w1/sqrt(as.matrix(eigen(m)$values)[1,])
v1
t1=x0%*%w1
t1 # 以上为第一步(1)分别提取两变量组的第一对成分,并使之相关性达最大。
u1=y0%*%v1
u1
library("pracma")
α1=inv(t(t1)%*%t1)%*%t(t1)%*%x0 #也可由t(x0)%*%t1/
+补充了pls回归系数的算法&spm=1001.2101.3001.5002&articleId=92088953&d=1&t=3&u=bb7ad24b80994db286fce54ff4a8689d)

本文详细介绍了2012年中国数学建模大赛A题,即葡萄与葡萄酒的数据分析。通过Python实现了主成分分析(PCA)和部分最小二乘回归(PLS),并讨论了如何选择主成分数。利用R的pls包进行PLS回归建模,最后展示了模型验证和预测结果。

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



