【HDU 2196】 Computer (树形DP)

【HDU 2196】 Computer

题链http://acm.hdu.edu.cn/showproblem.php?pid=2196

刘汝佳《算法竞赛入门经典》P282页留下了这个问题:给出一棵树,求每个节点的最远点,每一个节点的最远点有两种可能,一种是向下拓展的最远点,一种是父节点的最远点,那么需要两次dfs即可。一次求出每个节点的最远点和次远点,一次直接计算。

#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <vector>
#define ll long long
#define inf 10000000000000
#define mod 1000000007
using namespace std;
ll read()
{
    ll x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9')
    {
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
const int N=1e4+10;
const int M=1e4+10;
struct Edge{
    int cost,to,nxt;
}Path[M];
int head[N],cnt;
ll dis[N];
void Addedge(int u,int v,int w){
    Path[cnt]=(Edge){w,v,head[u]};
    head[u]=cnt++;
}
void Init()
{
    memset(head,0,sizeof(head));
    cnt=1;
}
//dp[i][0],dp[i][1]表示向下最大和次大距离,dp[i][2]表示向上最大距离
int dp[N][3];
void dfs1(int u)
{
    int t1=0,t2=0;   //最大和次大
    for(int i=head[u];i;i=Path[i].nxt){
        int v=Path[i].to;
        dfs1(v);
        int tmp=dp[v][0]+Path[i].cost;
        if(t1<=tmp){
            t2=t1;t1=tmp;
        }
        else if(t2<tmp) t2=tmp;
    }
    dp[u][0]=t1;dp[u][1]=t2;
}
void dfs2(int u)
{
    for(int i=head[u];i;i=Path[i].nxt){
        int v=Path[i].to;
        dp[v][2]=max(dp[u][2],dp[v][0]+Path[i].cost==dp[u][0]?dp[u][1]:dp[u][0])+Path[i].cost;
        dfs2(v);
    }
}
int main()
{
    int n;
    while(~scanf("%d",&n)){
        Init();
        for(int v=2;v<=n;v++){
            int u=read(),w=read();
            Addedge(u,v,w);
        }
        dfs1(1);dp[1][2]=0;dfs2(1);
        for(int i=1;i<=n;i++)
            printf("%d\n",max(dp[i][0],dp[i][2]));
    }
    return 0;
}

转载于:https://www.cnblogs.com/zsyacm666666/p/6958588.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值