Leetcode 155. Min Stack JAVA语言

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
push(x) -- Push element x onto stack.
pop() -- Removes the element on top of the stack.
top() -- Get the top element.
getMin() -- Retrieve the minimum element in the stack.
 
Example:
MinStack minStack = new MinStack();
minStack.push(-2);
minStack.push(0);
minStack.push(-3);
minStack.getMin();   --> Returns -3.
minStack.pop();
minStack.top();      --> Returns 0.
minStack.getMin();   --> Returns -2.
 
 
Subscribe to see which companies asked this question.

题意:设计一个有MIN函数的栈。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public  class  MinStack {
     private  Stack<Integer> stackData;
     private  Stack<Integer> stackMin;
 
     /** initialize your data structure here. */
     public  MinStack() {
         stackData= new  Stack<Integer>();
         stackMin= new  Stack<Integer>();
     }
     
     public  void  push( int  x) {
         if (stackMin.isEmpty()){
             stackMin.push(x);
         } else  if (x<=stackMin.peek()){
             stackMin.push(x);
         }
         stackData.push(x);
     }
     /这里貌似有点问题。。。。//包装类比较。。。。
     public  void  pop() {
         if (stackData.peek().equals(stackMin.peek())){
             stackMin.pop();
         }
         stackData.pop();
     }
     
     public  int  top() {
         return  stackData.peek();
     }
     
     public  int  getMin() {
         return  stackMin.peek();
     }
}
 
/**
  * Your MinStack object will be instantiated and called as such:
  * MinStack obj = new MinStack();
  * obj.push(x);
  * obj.pop();
  * int param_3 = obj.top();
  * int param_4 = obj.getMin();
  */

PS:定义一个辅助栈。用于存放每一步的最小值。参见左老师的书P1。


本文转自 努力的C 51CTO博客,原文链接:http://blog.51cto.com/fulin0532/1905453


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值