[学习笔记]阶和原根

阶&&原根性质:

http://www.cnblogs.com/cytus/p/9296661.html

 

我们不管阶。

对于一个数m,若对于所有的i,$1<=i<=\phi_m$

整数a满足$a^i mod\space m$的值是小于m和m互质的$\phi(m)$个数的排列,那么,a是m的一个原根

一般要求最小的正原根g

 

求法:

暴力枚举g

性质:

g是原根的充要条件:

对于任意的i,$1<=i<\phi_m$

若$g^i\neq 1 \space mod \space m$都成立

那么,g是m的一个原根

证明:

必要性:显然

假如不成立。那么,会和$a^i=1 \space mod \space \phi(m)$相同

充分性:

反证。

在条件成立下,假如存在一个j,k,使得

$a^j=c \space mod \space m$和$a^k=c \space mod \space m$相同

那么,必然有$a^{(i-j)}=1 \space mod \space m$

矛盾。

证毕。

 



然后优化求法的看这篇:https://blog.csdn.net/zhouyuheng2003/article/details/80163139

(这个博客挂了)

 

找原根,从2开始枚举

暴力验证1<=i<=phi是否有g^i=1

比较优化的是,枚举phi的所有约数(不包括phi自己),没有得1的是充分必要条件(必要性:显然。充分性:考虑一个p,使得g^p=1,由于g^phi=1,所以g^(phi-p)=1,进而,g^(gcd(phi,p)=1,而phi的所有约数k都不满足g^k=1 ,所以矛盾。)

最优化的话,phi=p1^q1*p2^q2*p3^q3...*pk^qk,枚举质因子t=pi,如g^(phi/t)都不为1的话,g是原根。

对于最优求法的证明补充:

 

必要性:显然。和上面我写的证明一样。

充分性:如果g满足条件却不是原根,那么,存在一个不属于那个验证集合的k满足,$k|\phi(m) $且$ g^k=1 \space mod \space m$

(若不存在$k|\phi(m)$满足$ g^k=1 \space mod \space m$,那么就意味着,对于所有的$\phi(m)$的约数d,都满足$g^d=1 \space mod \space m$那么,根据第一个优化算法的证明,g一定是原根了)

那么,显然有,$g^{tk}=1 \space mod \space m$

那么,必然会有一个验证集合的数x,使得$x=g^{tk}$,会矛盾。

证毕。

 

模板题:

https://www.51nod.com/Challenge/Problem.html#!#problemId=1135

 

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define numb (ch^'0')
using namespace std;
typedef long long ll;
il void rd(int &x){
    char ch;x=0;bool fl=false;
    while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
    for(x=numb;isdigit(ch=getchar());x=x*10+numb);
    (fl==true)&&(x=-x);
}
namespace Miracle{
const int N=1e5+5;
int p;
ll qm(int x,int y,int mod){
    ll ret=1;
    while(y){
        if(y&1) ret=(ll)ret*x%mod;
        y>>=1;
        x=(ll)x*x%mod;
    }
    return ret;
}
int fac[N],tot;
void divi(int x){
    for(reg i=2;(ll)i*i<=x;++i){
        if(x%i==0){
            fac[++tot]=i;
            while(x%i==0) x/=i;
        }
    }
}
int main(){
    scanf("%d",&p);
    divi(p-1);
    int ans=2;
    while(1){
        bool fl=true;
        for(reg i=1;i<=tot;++i){
            ll tmp=qm(ans,(p-1)/fac[i],p);
            if(tmp==1) {
                fl=false;break;
            }
        }
        if(fl) break;
        ++ans;
    }
    printf("%d",ans);
    return 0;
}

}
int main(){
    Miracle::main();
    return 0;
}

/*
   Author: *Miracle*
   Date: 2018/11/20 14:36:16
*/
View Code

 

应用:

当m是质数的时候,g^i可以遍历j(属于1~m-1)

我们可以用i代替j

 

那么,如果要计算j*k,j、k的原根是x、y。

那么可以计算成x+y。再计算g^(x+y)

有的时候可以降低复杂度。

 

 

转载于:https://www.cnblogs.com/Miracevin/p/9989423.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值