本期导读
知识点:多元函数极值
思政点:选择太多时的方向(二元选择后的多元选择)
思政解读
先看下面两张图,并思考一个问题,同样是图中标注的“红点·(注意:图1的红点在曲线上;而图2的红点在曲面上)”,如果让它在方程上移动(即满足方程,在曲线上或曲面上),那么这两个红点会有多少选择呢?显然,图1中的红点的选择无非两个方向,向下或向上;而图2中的红点的选择就是360°全方位的了。但任何一个选择(至少就图中来讲)都面临一个问题:这个选择距离极值点更近了还是更远了?
图1:曲线与直线的切点
图2:曲面与平面的切点
注:图1-2修改自网文:《求解全微分的意义?最好感性一点的认识 - 知乎》 https://www.zhihu.com/question/31464934
我们可以看到,同样是

本文通过微积分中的多元函数极值概念,探讨人生抉择中由二元到多元选择的变化,强调方向选择的重要性。以吃晚饭为例,说明在明确目标后,初始的二元选择不再是问题。同时,将考研读博的二元决策与后续多元选择相结合,引导学生思考目标导向的决策路径。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



