在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。
Python的multiprocessing模块不
但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。
举个例子:如果我们已经有一个通过Queue通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上。怎么用分布式进程实现?
原有的Queue可以继续使用,但是,通过managers模块把Queue通过网络暴露出去,就可以让其他机器的进程访问Queue了。
我们先看服务进程,服务进程负责启动Queue,把Queue注册到网络上,然后往Queue里面写入任务:
#task_master.py
import random,time,queue
from multiprocessing.managers import BaseManager
#发送任务的队列
task_queue = queue.Queue()
#接收结果的队列
result_queue = queue.Queue()
#从BaseManager继承的QueueManager
class QueueManager(BaseManager):
pass
def return_task_queue():
global task_queue
return task_queue
def return_result_queue():
global result_queue
return result_queue
#把两个Queue都注册到网络上,callable参数关联了Queue对象
QueueManager.register('get_task_queue',callable=return_task_queue)
QueueManager.register('result_task_queue',callable=return_result_queue)
#绑定端口,设置验证码
manager = QueueManager(address=('127.0.0.1',9000),authkey=b'abc')
if __name__ == '__main__':
#启动Queue
manager.start()
#获得通过网络访问的QUeue对象
task = manager.get_task_queue()
result = manager.result_task_queue()
# 放几个任务进去:
for i in range(10):
n = random.randint(0, 10000)
print('Put task %d...' % n)
task.put(n)
# 从result队列读取结果:
print('Try get results...')
for m in range(10):
r = result.get(timeout=10)
print('Result: %s' % r)
# 关闭:
manager.shutdown()
print('master exit.')
#task_worker.py
from multiprocessing.managers import BaseManager
from multiprocessing import freeze_support
class QueueManager(BaseManager):
pass
if __name__ == '__main__':
QueueManager.register('get_task_queue')
QueueManager.register('result_task_queue')
server_adr = '127.0.0.1'
print('connect to the server%s',server_adr)
manager = QueueManager(address = (server_adr,9000),authkey = b'abc')
manager.connect()
print('connect successfuly')
task = manager.get_task_queue()
result = manager.result_task_queue()
for i in range(10):
try:
t = task.get(timeout = 1)
print('now process the task%d'%t)
result.put(t*t)
except queue.Empty:
print('the task queue is empty, maybe some task lost?')
print('wordker exit')
转载于:https://blog.51cto.com/yhn0011/1924062