图示 Smart-Art

在PPT中,图示有两个作用,一是将对象间的逻辑关系视觉化,使文字承载的信息一目了然; 二是打破呆板的页面版式,让枯燥的文本变得更有魅力。

比较聪明的办法是在Sma吨Art生成图形的基础上继续编辑,使其符合使用要求 (也可以自己制作图示)

图示的基本类型(6大基础)

并列图示

横列式 : 横列式是最常见的并列形式,各个元素是由上向下排列的, 但横列式布局过于常见,因此容易显得枯燥. 此时通过区分要点层次、缩小字号并适当拉开行距,以及添加图形装饰等方法, 项目符号也可以使用比较美观一些

纵列式 纵列的版式比较新颖,看起来比较别致,但文字断行较多,阅读不流畅,易读性有所牺牲,纵列式也不适合同时展示过多条目.

表格式 表格式图示实际上是使用“分栏”技巧充分利用空间,以利于展示多个条目

散列式 散列式图打破了条目的布局限制, 但散列式并不适合条目较少的情况下使用.

递进图示 递进式图示的各个项目具有时间或者逻辑上的先后关系,用于表示先后关系的箭头、阶梯和金字塔是递进式图示的重要元素.

时间轴 时间轴是最常用的递进图示形式,是表示时间事件的不二选择。时间轴的主体是一条带有箭头的直线或曲线.

阶梯式 阶梯状地排列各个项目就会得到阶梯式递进图示

圆环式 圆环式图示表示层次上的递进关系,同心圆有层层深入或者逐步扩张之意,而相切圆的含义则侧重于各个层级的包含关系.

金字塔式 金字塔式图示用于表示逐级提升的含义,

总分图示

总分图示用于表示整体的组成、层级甚至因果关系.

环绕式 环绕式是非常常用的总分图示,但文字对齐比较困难,很容易让人感觉不舒服, 因环绕图示不宜过于复杂,应当小心地保证文字的易读性

环绕图示容易扩展,添加子项即可得到多级的总分图示

维恩式 当各个项目只有关键词时,外观简洁的维恩式图示是一个不错的选择

树式 树式图示也是一种常用的总分图示,可再细分为组织图、鱼骨图、树根图等, 使用树式图示最容易犯的错误就是边框颜色太艳,分散了观众对文字的注意, 树形图制作时应适当简化,并不是每条线段都必须使用箭头.

对比型

对比型图示用于对比两项内容或者表示两条内容的冲突。它可以看做是并列型图示的简单变形

流程图

流程图用于展示事件的流程或机理。过于随意地使用多种颜色是使用流程图的常见错误,实际上使用不同的形状已经足以让各个元素区别开来,选择同色调的一组颜色会让图示显得更专业.

示意图

示意图是通过抽象和具象的图形解释事物原理的图形,是视觉化程度最高的图示类型, 与上述其他逻辑图示相比,示意图有两点不同,其一是示意图常常会在一个图中同时包含多种逻辑关系, 其二是示意图常常使用比较形象的图形来更直观地说明事情的原理.

 

转载于:https://www.cnblogs.com/moveofgod/p/6367363.html

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值