CNNs for Text Classification

研究问题

关于Convlutional Neural Networks(CNNs)在自然语言处理领域的应用。

这一次的研究主要是针对文本分类这一个问题所展开。

研究方法

  1. 了解卷积神经网络。
  2. 阅读paper,深入理解CNN在NLP中的模型细节。
  3. 类比CNN在CV中的应用,总结两者异同。
  4. 代码实现
附加:

类比信号与系统,理解卷积的真正意义,体会信号系统与图像处理中卷积模型所起的不同作用。

拟采用的方法

CNNs的定义

卷积神经网络本质上是由多个卷积层,经过激活函数后产生输出的网络。可以将其大致划分为输入层,卷积层,池化层,全连接层和输出层。

卷积层

其中卷积层的工作,是通过定义一系列卷积核,依次扫过图像中的每个区域,产生一个新的特征矩阵的过程。因此,卷积核在训练完成后,更像是一个特征过滤器,在扫过图像的过程中,忽略掉与特征不相符的部分,而将符合这种特征的部分放大化(通常是分配一个较大的权重)。

池化层

池化层通常会紧跟在卷积层之后,对卷积层所产生的特征矩阵进行子采样(可能是去平均值,或者取最大值),最终得到一个固定大小的矩阵。

池化层主要的作用有两方面。

第一,固定大小。经由卷积层产生的特征矩阵通常是大小不定的,所以我们无法将它直接投入到全连接层进行后续工作,而池化层在这里起到了“连接器”的作用,它将一个不定大小的矩阵转化成了固定大小的矩阵,随时可以喂食到后续神经网络。

第二,信息提取。池化层在降低输出维度的同时,保留了原始特征矩阵总最显著的信息,并不会因为维度的降低而导致信息的丢失。

全连接层

所谓全连接是指,本层所有的神经元都与下一层的神经元相连。因为相对简单,这里也不再赘述。

总结

通过观察下图我们可以发现,一个CNNs会由多个卷积层,多个池化层,经由全连接层产生输出。

全连接层起到的作用很容易理解,通常也只是分类,回归等任务。那么介于原始图像,和分类网络之间的卷积层和池化层究竟起了什么作用?

我认为,它们两层合起来可以用“特征提取层”来概括,也就是说,卷积层和池化层其实是一个特征抽取,数据加工的过程,将原始的图像经过一系列的处理,加工,才能产生易于分类的数据类型,然后进行分类工作。

CNNs在NLP中的模型

类比CNNs在图像处理中的应用,NLP中的模型实际上是将一个句子以图的概念理解。

initialize

在初始化特征矩阵时,句子中的每一个单词的word embeddings作为矩阵的一行,得到一个n*k的矩阵,其中n是句子中的单词数,k是词嵌入模型的维度,也可以是one-hot模型,但是考虑到样本的稀疏度,一般会采用低维的词嵌入模型。

filter

在CV中,一般我们的卷积核filters会扫过图像的局部像素,但在NLP中,通常会只改变filters的长度,而宽度始终等于词嵌入维度k,也就是说,filter的最小单位一整行,一个完整的word。而通常情况下,会使用一个长度为2~5的filter,这是因为实际情况中,很少会出现5个词以上的长组合短语。

pooling

CV中的池化操作通常会产生一个n * m的特征矩阵,但在NLP中,产生的特征矩阵会是一个n * 1的矩阵。

产生这种不同的原因是因为,在图像中,传递信息的是一个像素块,而在自然语言处理中,传递信息的是一个word,图像本身就是二维的,所以需要用二维去传递信息,但是对于词而言,第二个维度k实际上是词嵌入的维度,并不会传递有关于这个句子的信息。

channel

CV处理中,我们会遇到RGB图分为R,G,B三个channel分析的情况。在NLP中,似乎看上去一个channel就足够来做分析。

但是在原始paper中提到,NLP中的CNNs模型也可以有多个通道,一般是staticfine-tuned

static通道在backpropagation的过程中是静态的,保持不变的,但是fine-tuned通道会随着训练发生变化。

除了这两个通道之外,我们也可以增加另外的通道,比如改变句子的语言,或者将句子替换成其他同义句等等。

实验

实验部分用tensorflow实现了CNN-rand模型,数据集采用原paper中的MR数据集,这是一个关于电影评价的数据集,数据集将评价分为了positive和negetive两个部分。

由于这个数据集本身较小,而且没有dev,因此抽取了其中的10%作为dev。

Embedding Layer

第一部分是embedding layer,将一个词映射成低维word embedding。这里没有采用google的word2vec是因为这个模型本身较为简单,而且笔记本算力有限,所以自己构建了一个简单的embedding layer。

with tf.device('/cpu:0'), tf.name_scope("embedding"):
    self.W = tf.Variable(
        tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
        name="W")
    self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
    self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
复制代码

W是一个随机均匀分布,维度为vocab_size * embedding_size的初始化矩阵。

tf.nn.embedding_lookup方法创建了一个词嵌入矩阵,它的维度和W一致,返回的类型为[None, sequence_length, embedding_size]

tf.expand_dims(self.embedded_chars, -1)在返回值的最后一个维度插入1,变成[None, sequence_length, embedding_size, 1],这里的1代表的通道数,在后续con2d卷积方法中会使用。

Convolution and Max-Pooling Layer

卷积和池化模型的建立。

因为是CNN-rand模型,所以通道数为1,且采用窄卷积的方式进行卷积操作。

pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters]
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
                conv = tf.nn.conv2d(
                    self.embedded_chars_expanded,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                # Max-pooling
                pooled = tf.nn.max_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1],
                    strides=[1, 1, 1, 1],
                    padding='VALID',
                    name="pool")
                pooled_outputs.append(pooled)

        # Combine all the pooled features
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(pooled_outputs, 3)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])
复制代码

这里的filter_size = "3,4,5",是采用长度分别为3,4,5的三种filter对词嵌入矩阵进行卷积。

W是卷积核,用截断正态分布进行初始化。b是偏置数,h为卷积输出经过激活函数以后的结果。

tf.nn.conv2d中的stridespadding参数,分别表示步长和卷积方式。'VALID'是窄卷积,产生的输出类型为[1, sequence_length - filter_size +1, 1, 1]

卷积结果经过一个ReLU激活后,放入池化层。

池化层是一个Max-pooling,会将卷积输出的n * 1的矩阵中取出一个最大值。然后将同一个filter的Max-pooling结果连接起来,最终得到的类型为[filter_num, 1]

最后将所有filter的结果相连,得到最终经过Convolution和Pooling的矩阵。

讨论

和原paper中给的76%比较接近,误差产生的原因可能在于我没有采用交叉验证,数据集较小的情况下可能发生过拟合的情况。

通过这一次课题研究,我试图去寻找CV和NLP在使用CNNs时的共性,我个人认为,他们都是通过特征的部分提取去创造特征来进行最终的分类训练。

但是在CV中,卷积核最终的训练形态比较容易理解,应该是一个图像的局部特征,比如一个圆,一个三角形,或是一条线等等。但在NLP中,却很难去定义卷积核最终到底产生了什么特性,它提取出来的特征到底是什么,这一点是我做完这一次研究后所困扰的。

总体而言,CNNs在NLP中的应用是将文本以图像的表示形式进行处理,虽然可能在一些方面的概念比较模糊,但卷积操作的速度,也使得CNNs模型在文本分类这一方向取得了不小的进步。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
2009年新书,非扫描 Contents List of Figures xiii List of Tables xix Introduction xxi About the Editors xxvii Contributor List xxix 1 Analysis of Text Patterns Using Kernel Methods 1 Marco Turchi, Alessia Mammone, and Nello Cristianini 1.1 Introduction . . . . . . . . . . . . . . . 1 1.2 General Overview on Kernel Methods . . . . . . . 1 1.2.1 Finding Patterns in Feature Space . . . . . . . . . . . 5 1.2.2 Formal Properties of Kernel Functions . . . . . . . . . 8 1.2.3 Operations on Kernel Functions . . . . . . . . . . . . 10 1.3 Kernels for Text . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3.1 Vector SpaceModel . . . . . . . . . . . . . . . . . . . 11 1.3.2 Semantic Kernels . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 String Kernels . . . . . . . . . . . . . . . . . . . . . . 17 1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Conclusion and Further Reading . . . . . . . . . . . . . . . . 22 2 Detection of Bias in Media Outlets with Statistical Learning Methods 27 Blaz Fortuna, Carolina Galleguillos, and Nello Cristianini 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Overview of the Experiments . . . . . . . . . . . . . . . . . . 29 2.3 Data Collection and Preparation . . . . . . . . . . . . . . . . 30 2.3.1 Article Extraction from HTML Pages . . . . . . . . . 31 2.3.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . 31 2.3.3 Detection of Matching News Items . . . . . . . . . . . 32 2.4 News Outlet Identification . . . . . . . . . . . . . . . . . . . . 35 2.5 Topic-Wise Comparison of Term Bias . . . . . . . . . . . . . 38 2.6 News OutletsMap . . . . . . . . . . . . . . . . . . . . . . . . 40 2.6.1 Distance Based on Lexical Choices . . . . . . . . . . . 42 vii © 2009 by Taylor and Francis Group, LLC viii 2.6.2 Distance Based on Choice of Topics . . . . . . . . . . 43 2.7 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.9 Appendix A: Support Vector Machines . . . . . . . . . . . . . 48 2.10 Appendix B: Bag of Words and Vector Space Models . . . . . 48 2.11 Appendix C: Kernel Canonical Correlation Analysis . . . . . 49 2.12 Appendix D: Multidimensional Scaling . . . . . . . . . . . . . 50 3 Collective Classification for Text Classification 51 Galileo Namata, Prithviraj Sen, Mustafa Bilgic, and Lise Getoor 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Collective Classification: Notation and Problem Definition . . 53 3.3 Approximate Inference Algorithms for Approaches Based on Local Conditional Classifiers . . . . . . . . . . . . . . . . . . . 53 3.3.1 Iterative Classification . . . . . . . . . . . . . . . . . . 54 3.3.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . 55 3.3.3 Local Classifiers and Further Optimizations . . . . . . 55 3.4 Approximate Inference Algorithms for Approaches Based on Global Formulations . . . . . . . . . . . . . . . . . . . . . . . 56 3.4.1 Loopy Belief Propagation . . . . . . . . . . . . . . . . 58 3.4.2 Relaxation Labeling via Mean-Field Approach . . . . 59 3.5 Learning the Classifiers . . . . . . . . . . . . . . . . . . . . . 60 3.6 Experimental Comparison . . . . . . . . . . . . . . . . . . . . 60 3.6.1 Features Used . . . . . . . . . . . . . . . . . . . . . . . 60 3.6.2 Real-World Datasets . . . . . . . . . . . . . . . . . . . 60 3.6.3 Practical Issues . . . . . . . . . . . . . . . . . . . . . . 63 3.7 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.9 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Topic Models 71 David M. Blei and John D. Lafferty 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . 72 4.2.1 Statistical Assumptions . . . . . . . . . . . . . . . . . 73 4.2.2 Exploring a Corpus with the Posterior Distribution . . 75 4.3 Posterior Inference for LDA . . . . . . . . . . . . . . . . . . . 76 4.3.1 Mean Field Variational Inference . . . . . . . . . . . . 78 4.3.2 Practical Considerations . . . . . . . . . . . . . . . . . 81 4.4 Dynamic Topic Models and Correlated Topic Models . . . . . 82 4.4.1 The Correlated Topic Model . . . . . . . . . . . . . . 82 4.4.2 The Dynamic Topic Model . . . . . . . . . . . . . . . 84 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 © 2009 by Taylor and Francis Group, LLC ix 5 Nonnegative Matrix and Tensor Factorization for Discussion Tracking 95 Brett W. Bader, Michael W. Berry, and Amy N. Langville 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.1.1 Extracting Discussions . . . . . . . . . . . . . . . . . . 96 5.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . 96 5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Tensor Decompositions and Algorithms . . . . . . . . . . . . 98 5.3.1 PARAFAC-ALS . . . . . . . . . . . . . . . . . . . . . 100 5.3.2 Nonnegative Tensor Factorization . . . . . . . . . . . . 100 5.4 Enron Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.1 TermWeighting Techniques . . . . . . . . . . . . . . . 103 5.5 Observations and Results . . . . . . . . . . . . . . . . . . . . 105 5.5.1 Nonnegative Tensor Decomposition . . . . . . . . . . . 105 5.5.2 Analysis of Three-Way Tensor . . . . . . . . . . . . . 106 5.5.3 Analysis of Four-Way Tensor . . . . . . . . . . . . . . 108 5.6 Visualizing Results of the NMF Clustering . . . . . . . . . . . 111 5.7 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Text Clustering with Mixture of von Mises-Fisher Distributions 121 Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, and Suvrit Sra 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.1 The von Mises-Fisher (vMF) Distribution . . . . . . . 124 6.3.2 Maximum Likelihood Estimates . . . . . . . . . . . . . 125 6.4 EMon aMixture of vMFs (moVMF) . . . . . . . . . . . . . . 126 6.5 Handling High-Dimensional Text Datasets . . . . . . . . . . . 127 6.5.1 Approximating κ . . . . . . . . . . . . . . . . . . . . . 128 6.5.2 Experimental Study of the Approximation . . . . . . . 130 6.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 134 6.7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 138 6.7.3 Simulated Datasets . . . . . . . . . . . . . . . . . . . . 138 6.7.4 Classic3 Family of Datasets . . . . . . . . . . . . . . . 140 6.7.5 Yahoo News Dataset . . . . . . . . . . . . . . . . . . . 143 6.7.6 20 Newsgroup Family of Datasets . . . . . . . . . . . . 143 6.7.7 Slashdot Datasets . . . . . . . . . . . . . . . . . . . . 145 6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 148 © 2009 by Taylor and Francis Group, LLC x 7 Constrained Partitional Clustering of Text Data: An Overview 155 Sugato Basu and Ian Davidson 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 7.2 Uses of Constraints . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.1 Constraint-Based Methods . . . . . . . . . . . . . . . 157 7.2.2 Distance-BasedMethods . . . . . . . . . . . . . . . . . 158 7.3 Text Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . 161 7.3.2 DistanceMeasures . . . . . . . . . . . . . . . . . . . . 162 7.4 Partitional Clustering with Constraints . . . . . . . . . . . . 163 7.4.1 COP-KMeans . . . . . . . . . . . . . . . . . . . . . . . 163 7.4.2 Algorithms with Penalties – PKM, CVQE . . . . . . . 164 7.4.3 LCVQE: An Extension to CVQE . . . . . . . . . . . . 167 7.4.4 Probabilistic Penalty – PKM . . . . . . . . . . . . . . 167 7.5 Learning Distance Function with Constraints . . . . . . . . . 168 7.5.1 Generalized Mahalanobis Distance Learning . . . . . . 168 7.5.2 Kernel Distance Functions Using AdaBoost . . . . . . 169 7.6 Satisfying Constraints and Learning Distance Functions . . . 170 7.6.1 Hidden Markov Random Field (HMRF) Model . . . . 170 7.6.2 EMAlgorithm . . . . . . . . . . . . . . . . . . . . . . 173 7.6.3 Improvements to HMRF-KMeans . . . . . . . . . . . 173 7.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 174 7.7.2 Clustering Evaluation . . . . . . . . . . . . . . . . . . 175 7.7.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . 176 7.7.4 Comparison of Distance Functions . . . . . . . . . . . 176 7.7.5 Experimental Results . . . . . . . . . . . . . . . . . . 177 7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8 Adaptive Information Filtering 185 Yi Zhang 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 8.2 Standard EvaluationMeasures . . . . . . . . . . . . . . . . . 188 8.3 Standard Retrieval Models and Filtering Approaches . . . . . 190 8.3.1 Existing Retrieval Models . . . . . . . . . . . . . . . . 190 8.3.2 Existing Adaptive Filtering Approaches . . . . . . . . 192 8.4 CollaborativeAdaptive Filtering . . . . . . . . . . . . . . . . 194 8.5 Novelty and Redundancy Detection . . . . . . . . . . . . . . . 196 8.5.1 Set Difference . . . . . . . . . . . . . . . . . . . . . . . 199 8.5.2 Geometric Distance . . . . . . . . . . . . . . . . . . . 199 8.5.3 Distributional Similarity . . . . . . . . . . . . . . . . . 200 8.5.4 Summary of Novelty Detection . . . . . . . . . . . . . 201 8.6 Other Adaptive Filtering Topics . . . . . . . . . . . . . . . . 201 8.6.1 Beyond Bag ofWords . . . . . . . . . . . . . . . . . . 202 © 2009 by Taylor and Francis Group, LLC xi 8.6.2 Using Implicit Feedback . . . . . . . . . . . . . . . . . 202 8.6.3 Exploration and Exploitation Trade Off . . . . . . . . 203 8.6.4 Evaluation beyond Topical Relevance . . . . . . . . . 203 8.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 204 9 Utility-Based Information Distillation 213 Yiming Yang and Abhimanyu Lad 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 9.1.1 Related Work in Adaptive Filtering (AF) . . . . . . . 213 9.1.2 Related Work in Topic Detection and Tracking (TDT) 214 9.1.3 Limitations of Current Solutions . . . . . . . . . . . . 215 9.2 A Sample Task . . . . . . . . . . . . . . . . . . . . . . . . . . 216 9.3 Technical Cores . . . . . . . . . . . . . . . . . . . . . . . . . . 218 9.3.1 Adaptive Filtering Component . . . . . . . . . . . . . 218 9.3.2 Passage Retrieval Component . . . . . . . . . . . . . . 219 9.3.3 Novelty Detection Component . . . . . . . . . . . . . 220 9.3.4 Anti-Redundant Ranking Component . . . . . . . . . 220 9.4 EvaluationMethodology . . . . . . . . . . . . . . . . . . . . . 221 9.4.1 Answer Keys . . . . . . . . . . . . . . . . . . . . . . . 221 9.4.2 Evaluating the Utility of a Sequence of Ranked Lists . 223 9.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 9.6 Experiments and Results . . . . . . . . . . . . . . . . . . . . . 226 9.6.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . 226 9.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 229 9.8 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . 229 10 Text Search-Enhanced with Types and Entities 233 Soumen Chakrabarti, Sujatha Das, Vijay Krishnan, and Kriti Puniyani 10.1 Entity-Aware Search Architecture . . . . . . . . . . . . . . . . 233 10.1.1 Guessing Answer Types . . . . . . . . . . . . . . . . . 234 10.1.2 Scoring Snippets . . . . . . . . . . . . . . . . . . . . . 235 10.1.3 Efficient Indexing and Query Processing . . . . . . . . 236 10.1.4 Comparison with Prior Work . . . . . . . . . . . . . . 236 10.2 Understanding the Question . . . . . . . . . . . . . . . . . . . 236 10.2.1 Answer Type Clues in Questions . . . . . . . . . . . . 239 10.2.2 Sequential Labeling of Type Clue Spans . . . . . . . . 240 10.2.3 From Type Clue Spans to Answer Types . . . . . . . . 245 10.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . 247 10.3 Scoring Potential Answer Snippets . . . . . . . . . . . . . . . 251 10.3.1 A ProximityModel . . . . . . . . . . . . . . . . . . . . 253 10.3.2 Learning the Proximity Scoring Function . . . . . . . 255 10.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . 257 10.4 Indexing and Query Processing . . . . . . . . . . . . . . . . . 260 © 2009 by Taylor and Francis Group, LLC xii 10.4.1 Probability of a Query Atype . . . . . . . . . . . . . . 262 10.4.2 Pre-Generalize and Post-Filter . . . . . . . . . . . . . 262 10.4.3 Atype Subset Index Space Model . . . . . . . . . . . . 265 10.4.4 Query Time BloatModel . . . . . . . . . . . . . . . . 266 10.4.5 Choosing an Atype Subset . . . . . . . . . . . . . . . . 269 10.4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . 271 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 10.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 272 10.5.2 Ongoing and Future Work . . . . . . . . . . . . . . . . 273 © 2009

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值