BZOJ1565:[NOI2009]植物大战僵尸——题解

http://www.lydsy.com/JudgeOnline/problem.php?id=1565

https://www.luogu.org/problemnew/show/P2805

Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏。Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻。该款游戏包含多种不同的挑战系列,比如Protect Your Brain、Bowling等等。其中最为经典的,莫过于玩家通过控制Plants来防守Zombies的进攻,或者相反地由玩家通过控制Zombies对Plants发起进攻。

现在,我们将要考虑的问题是游戏中Zombies对Plants的进攻,请注意,本题中规则与实际游戏有所不同。游戏中有两种角色,Plants和Zombies,每个Plant有一个攻击位置集合,它可以对这些位置进行保护;而Zombie进攻植物的方式是走到植物所在的位置上并将其吃掉。

游戏的地图可以抽象为一个N行M列的矩阵,行从上到下用0到N–1编号,列从左到右用0到M–1编号;在地图的每个位置上都放有一个Plant,为简单起见,我们把位于第r行第c列的植物记为Pr, c。

Plants分很多种,有攻击类、防守类和经济类等等。为了简单的描述每个Plant,定义Score和Attack如下:

Score[Pr, c]

Zombie击溃植物Pr, c可获得的能源。若Score[Pr, c]为非负整数,则表示击溃植物Pr, c可获得能源Score[Pr, c],若为负数表示击溃Pr, c需要付出能源 -Score[Pr, c]。

Attack[Pr, c]

植物Pr, c能够对Zombie进行攻击的位置集合。

Zombies必须从地图的右侧进入,且只能沿着水平方向进行移动。Zombies攻击植物的唯一方式就是走到该植物所在的位置并将植物吃掉。因此Zombies的进攻总是从地图的右侧开始。也就是说,对于第r行的进攻,Zombies必须首先攻击Pr, M-1;若需要对Pr, c(0≤c<M-1)攻击,必须将Pr,M-1, Pr, M-2 … Pr, c+1先击溃,并移动到位置(r, c)才可进行攻击。

在本题的设定中,Plants的攻击力是无穷大的,一旦Zombie进入某个Plant的攻击位置,该Zombie会被瞬间消灭,而该Zombie没有时间进行任何攻击操作。因此,即便Zombie进入了一个Plant所在的位置,但该位置属于其他植物的攻击位置集合,则Zombie会被瞬间消灭而所在位置的植物则安然无恙(在我们的设定中,Plant的攻击位置不包含自身所在位置,否则你就不可能击溃它了)。

Zombies的目标是对Plants的阵地发起进攻并获得最大的能源收入。每一次,你可以选择一个可进攻的植物进行攻击。本题的目标为,制定一套Zombies的进攻方案,选择进攻哪些植物以及进攻的顺序,从而获得最大的能源收入。

首先把植物看成点,那么这个点有点权,且取这个点必须取它前面的点和保护它的点。

于是这就是最大权闭合子图的模型了。

但是有一个问题,保护可能是一个环,这样你一个点也取不了。

为此需要拓扑排序,剔除这些点。

但是还要注意,拓扑排序的边和最大权闭合子图的边是反的,因为前者中虽然可能出现守护环,但是守护这个环的点可以被吃,如果不反向那么环删不掉的同时守护环的点也会删不掉。

(就因为这个别了半个点……)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cctype>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=705;
const int M=800005;
const int INF=1e9;
inline int read(){
    int X=0,w=0;char ch=0;
    while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
    while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    return w?-X:X;
}
struct node{
    int nxt,to,w;
}edge[M];
int head[N],cnt=-1,S,T;
void add(int u,int v,int w){
    edge[++cnt].to=v;edge[cnt].w=w;edge[cnt].nxt=head[u];head[u]=cnt;
}
int lev[N],cur[N],dui[N];
bool bfs(int m){
    int r=0;
    for(int i=1;i<=m;i++){
    lev[i]=-1;
    cur[i]=head[i];
    }
    dui[0]=S,lev[S]=0;
    int u,v;
    for(int l=0;l<=r;l++){
    u=dui[l];
    for(int e=head[u];e!=-1;e=edge[e].nxt){
        v=edge[e].to;
        if(edge[e].w>0&&lev[v]==-1){ 
        lev[v]=lev[u]+1;
        r++;
        dui[r]=v; 
        if(v==T)return 1; 
        }
    }
    }
    return 0;
}
int dinic(int u,int flow,int m){
    if(u==m)return flow;
    int res=0,delta;
    for(int &e=cur[u];e!=-1;e=edge[e].nxt){
    int v=edge[e].to;
    if(edge[e].w>0&&lev[u]<lev[v]){ 
        delta=dinic(v,min(edge[e].w,flow-res),m); 
        if(delta>0){
        edge[e].w-=delta;
        edge[e^1].w+=delta;
        res+=delta;
        if(res==flow)break; 
        }
    }
    }
    if(res!=flow)lev[u]=-1;
    return res;
}
int n,m,ans,s[N],indeg[N];
queue<int>q;
void Topu(){
    for(int i=1;i<=n*m;i++){
    if(!indeg[i])q.push(i);
    }
    while(!q.empty()){
    int u=q.front();
    q.pop();
    for(int i=head[u];i!=-1;i=edge[i].nxt){
        if(!(i&1))continue;
        int v=edge[i].to;
        indeg[v]--;
        if(!indeg[v])q.push(v);
    }
    }
    for(int i=1;i<=n*m;i++){
    if(indeg[i]){
        s[i]=-INF;
    }
    }
}
int main(){
    memset(head,-1,sizeof(head));
    n=read(),m=read();
    S=n*m+1,T=S+1;
    for(int i=1;i<=n;i++){
    for(int j=1;j<=m;j++){
        int now=(i-1)*m+j;
        s[now]=read();int w=read();
        for(int k=1;k<=w;k++){
        int x=read()+1,y=read()+1;
        int bef=(x-1)*m+y;
        add(bef,now,INF);add(now,bef,0);
        indeg[bef]++;
        }
        if(j!=m){
        int bef=now+1;
        add(now,bef,INF);add(bef,now,0);
        indeg[now]++;
        }
    }
    }
    Topu();
    for(int i=1;i<=n*m;i++){
    if(s[i]>=0){
        ans+=s[i];
        add(S,i,s[i]);add(i,S,0);
    }else{
        add(i,T,-s[i]);add(T,i,0);
    }
    }
    while(bfs(T))ans-=dinic(S,INF,T);
    printf("%d\n",ans);
    return 0;
}

+++++++++++++++++++++++++++++++++++++++++++

 +本文作者:luyouqi233。               +

 +欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

转载于:https://www.cnblogs.com/luyouqi233/p/8460949.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值