数学函数最小值为什么可以通过导数=0来求出呢?

本文解释了导数的概念及其几何意义,并探讨了如何利用导数判断函数的极值点。文章指出导数为0是存在极值的必要条件,但还需结合二阶导数来进一步确定是极大值还是极小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、导数的全称是导函数,由于我们过于喜欢简称,把导数的值也称为导数

2、导函数的几何意义是计算曲线上任意一点的斜率 tangent、slope、
      gradient,而水平的切线的斜率是0。

3、  有极大值 maxima,或极小值 minima 的地方的斜率是0,水平
      直线的斜率也是0,所以斜率为0是有极值或最值的必要条件 necessity。

4、单单有导数为0,还不足以推论是极大值点,还是极小值点。但是我们
      太多的教师,常常误导学生,尤其是到了大二左右的多元函数微积分时,
      很多教授依然用必要条件去误导学生讨论极值点、计算多元函数的极值。

      对于一元函数,我们还需要计算二阶导数,才有充分性 sufficiency。
      两者合在一起才是充要条件 = Necessary and sufficient conditions。

      平时我们简称的“当且仅当”就是这个意思,Iff = if and only if。

转载于:https://www.cnblogs.com/BelieveFish/p/10672199.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值