复分析学习10——Liouville定理及其应用

    前面我们得到关于全纯函数导数的估计式

\[|f'(z_{0})|\leq\frac{1}{r}\cdot\sup\limits_{z\in B(z_{0},r)}|f(z)|\]

如果我们设$f(z)$在整个复平面$\mathbb C$上有界,在上式中令$r\to\infty$即得

\[f'(z_{0})=0\]

由$z_{0}$的任意性可知$f'(z)=0$在$\mathbb C$上恒成立.这就说明$f(z)$常值了.可以简单证明一下,这一点根据Cauchy-Riemann方程是显然的.

以上便是Liouville定理的内容:若全纯函数$f(z)$在$\mathbb C$上有界,则必为常数.

当然也可以这样说明,因为$f$全纯,那么在任一闭圆盘$\overline{B}(0,R)$上,$f$有Taylor级数

\[f(z)=\sum_{n=0}^{\infty}a_{n}z^n\]

其中

$$|a_{n}|\leq\frac{M}{R^n}$$,令$R\to\infty$可得$a_{n}=0(n=1,2,\cdots)$,从而

$$f(z)=a_{0}$$

如果引入无穷远点$\infty$可微性的概念:设$f(z)$在无穷远点全纯,定义为函数$f\left(\frac{1}{z}\right)$在$z=0$处全纯.

我们便可将Liouville定理叙述为:在扩充复平面$\mathbb C^*$上的全纯函数必为常数.

Liouville定理可以用来证明代数学基本定理:设$f(z)\in\mathbb C_{n}[x]$,若$f(z)$没有零点,那么$\frac{1}{f(z)}$在$\mathbb C$上全纯,且由于$\lim\limits_{z\to\infty}f(z)=\infty$,则$\frac{1}{f(z)}$有界,根据Liouville定理可知$f(z)$为常数,矛盾!

转载于:https://www.cnblogs.com/xixifeng/p/3744018.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值