【BZOJ】2956: 模积和

题意

\(\sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417\), \((n, m \le 10^9)\)

分析

以下均设\(n \le m\)

$$ \begin{align} & \sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j)[i \neq j] \ mod \ 19940417 \\ \equiv & \left( \sum_{i=1}^{n} \sum_{j=1}^{m} (n \ mod \ i)(m \ mod \ j) - \sum_{i=1}^{n} (n \ mod \ i \cdot m \ mod \ i) \right) \ mod \ 19940417 \\ \equiv & \left( \left( \sum_{i=1}^{n} (n \ mod \ i) \right) \left( \sum_{j=1}^{m} (m \ mod \ i) \right) - \sum_{i=1}^{n} (n \ mod \ i \cdot m \ mod \ i) \right) \ mod \ 19940417 \\ \end{align} $$

于是我们只需要快速求出\(\sum_{i=1}^{n} ( n \ mod \ i)\)\(\sum_{i=1}^{n} ( n \ mod \ i \cdot m \ mod \ i )\)就能解决问题了。

$$ \begin{align} & \sum_{i=1}^{n} ( n \ mod \ i) \\ = & \sum_{i=1}^{n} \left( n - i \left \lfloor \frac{n}{i} \right \rfloor \right) \\ = & n^2 - \sum_{i=1}^{n} i \left \lfloor \frac{n}{i} \right \rfloor \\ & \sum_{i=1}^{n} ( n \ mod \ i \cdot \ m \ mod \ i) \\ = & \sum_{i=1}^{n} \left( n - i \left \lfloor \frac{n}{i} \right \rfloor \right) \left( m - i \left \lfloor \frac{m}{i} \right \rfloor \right) \\ = & n^2m + \sum_{i=1}^{n} i^2 \left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor - n\sum_{i=1}^{n} i \left \lfloor \frac{m}{i} \right \rfloor - m\sum_{i=1}^{n} i \left \lfloor \frac{n}{i} \right \rfloor \\ \end{align} $$

题解

于是分块大法好...

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mo=19940417;
ll cal(int n, ll a) {
    ll ret=a%mo*n%mo, tp=0;
    for(int i=1, pos=0; i<=n; i=pos+1) {
        pos=n/(n/i);
        tp+=(a/i)%mo*(((ll)(pos+1)*pos/2-(ll)(i-1)*i/2)%mo)%mo;
        if(tp>=mo) {
            tp-=mo;
        }
    }
    return (ret-tp+mo)%mo;
}
int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    if(n>m) {
        swap(n, m);
    }
    printf("%lld\n", (cal(n, n)*cal(m, m)%mo-cal(n, (ll)n*m)+mo)%mo);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值