为了更好的记忆stack的数据结构。
把简单的事情弄好就是不简单,不不容易的事情做好就是不容易,有一天你感觉很难,因为你没有看过别人的实现。
将形状堆叠起来,就像分段条形图那样。
* d3.stack - 创建一个新的堆叠生成器。
* stack - 为给定数据生成堆叠数据。
* stack.keys - 设置键访问器。
* stack.value - 设置值访问器。
* stack.order - 设置排序访问器。
* stack.offset - 设置偏移访问器。
* d3.stackOrderAscending - 将最小值放在底部。
* d3.stackOrderDescending - 将最大值放在底部。
* d3.stackOrderInsideOut - 将最大值放在中部。
* d3.stackOrderNone - 使用给定的系列顺序。
* d3.stackOrderReverse - 系列给定的系列相反的顺序。
* d3.stackOffsetExpand - 标准化为0=1之间。
* d3.stackOffsetNone - 应用零基准。
* d3.stackOffsetSilhouette - 将流图居中在0附近。
* d3.stackOffsetWiggle - 流图最小摆动。
复制代码
在示例一个例子
var tem = [
{
'state':'columnOne',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1
},
{
'state':'columnTwo',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1
},
{
'state':'columnThree',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1
},
{
'state':'columnFor',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1
},
{
'state':'columnFive',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1
}
]
var Keys = [ "d", "e", "f"]
转化之后:var result = d3.stack().keys(Keys)(tem)
Stack 数据处理其实就是把多维的数据tem做下统计,按 Keys中的"d"拉出来一个分组,按"e"拉出来一个分组,按"f"拉出来一个分组,
每个小组里边的数组的长度和tem的长度相同
假设 a = result[0][0]; b = result[0][1];
(a 的[0]就是起始坐标,[1]就是终止坐标,[‘data’]就是tem[0])
(b 的[0]就是起始坐标,[1]就是终止坐标,[‘data’]就是tem[1])
复制代码
第一个需要知道的
第二个需要知道的
第三个需要知道的
第四个需要知道的
第五个展示效果
我们需要明白的就是注意的横坐标是什么,你的纬度是什么,这里的纬度是state。
完整代码
<!DOCTYPE html>
<style>
.axis .domain {
display: none;
}
</style>
<div>结论: legend是一个重要的功能点,</div>
<svg width="960" height="500"></svg>
<script src="https://d3js.org/d3.v4.min.js"></script>
<script>
var svg = d3.select("svg"),
margin = {top: 20, right: 20, bottom: 30, left: 40},
width = +svg.attr("width") - margin.left - margin.right,
height = +svg.attr("height") - margin.top - margin.bottom,
g = svg.append("g").attr("transform", "translate(" + margin.left + "," + margin.top + ")");
var x = d3.scaleBand()
.rangeRound([0, width])
.paddingInner(0.05)
.align(0.1);
var y = d3.scaleLinear()
.rangeRound([height, 0]);
var z = d3.scaleOrdinal()
.range(["#98abc5", "#8a89a6", "#7b6888", "#6b486b", "#a05d56", "#d0743c", "#ff8c00"]);
var tem = [
{
'state':'columnOne',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1,
total: 6
},
{
'state':'columnTwo',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1,
total: 6
},
{
'state':'columnThree',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1,
total: 6
},
{
'state':'columnFor',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1,
total: 6
},
{
'state':'columnFive',
'a': 1,
'b': 1,
'c': 1,
'd': 1,
'e': 1,
'f': 1,
total: 6
}
]
data = tem
keys = ['d','e','f']
data.sort(function(a, b) { return b.total - a.total; });
x.domain(data.map(function(d) { return d.state; }));
y.domain([0, d3.max(data, function(d) { return d.total; })]).nice();
z.domain(keys);
let tt = d3.stack().keys(keys)(data)
console.log(tt)
g.append("g")
.selectAll("g")
.data(tt)
.enter().append("g")
.attr("fill", function(d) {
return z(d.key);
})
.selectAll("rect")
.data(function(d) { return d; })
.enter().append("rect")
.attr("x", function(d) { return x(d.data.state); })
.attr("y", function(d) { return y(d[1]); })
.attr("height", function(d) { return y(d[0]) - y(d[1]); })
.attr("width", x.bandwidth());
g.append("g")
.attr("class", "axisX")
.attr("transform", "translate(0," + height + ")")
.call(d3.axisBottom(x))
.append("text")
.attr("font-size", 20)
g.append("g")
.attr("class", "axis")
.call(d3.axisLeft(y).ticks(null, "s"))
.append("text")
.attr("x", 2)
.attr("y", y(y.ticks().pop()) + 0.5)
.attr("dy", "0.32em")
.attr("fill", "#000")
.attr("font-weight", "bold")
.attr("text-anchor", "start")
.text("Population");
var legend = g.append("g")
.attr("font-family", "sans-serif")
.attr("font-size", 10)
.attr("text-anchor", "end")
.selectAll("g")
.data(keys.slice().reverse())
.enter().append("g")
.attr("transform", function(d, i) { return "translate(0," + i * 20 + ")"; });
legend.append("rect")
.attr("x", width - 19)
.attr("width", 19)
.attr("height", 19)
.attr("fill", z);
legend.append("text")
.attr("x", width - 24)
.attr("y", 9.5)
.attr("font-size", 20)
.attr("dy", "0.32em")
.text(function(d) { return d; });
</script>
复制代码