近期公共祖先(LCA)——离线Tarjan算法+并查集优化

一. 离线Tarjan算法

LCA问题(lowest common ancestors):在一个有根树T中。两个节点的近期公共祖先。指的是二者的公共祖先中深度最高的节点。

给定随意两个树中的节点,求它们的近期公共祖先。

对于二分查找树、二叉树,能够用普通的dfs实现。但对于多叉树、查询次数频繁的情况下。离线Tarjan算法的长处就显现出来了。因为对树上全部节点仅仅进行一次遍历,因此须要提前指定全部查询,所以才称为offline。

算法思路是:每次处理一个节点时。先递归处理其儿子节点,保证:若查询的节点pair均在该子树中,则处理完这个节点后,这些查询也已经处理完成,否则当中一个节点在还有一个子树中,这对节点的公共祖先至少应该是的父节点。详细是对每一个节点,都维护一个集合。每当一个节点处理完成,就与其父节点所在集合进行合并。处理完成指的是:以该节点为根节点的子树中的全部节点都被訪问过而且返回了。

因此以某个元素为代表元的集合内,保存的都是当前已经处理完成的子孙节点。

算法的伪代码例如以下:初始时每一个节点颜色均为white

LCA(u)
1	MakeSet(u)
2	u.ancestor := u
3	for each v in u.children do
4		LCA(v)
5		Union(u, v)
6		Find(u).ancestor := u
7	u.color := black;
8	for each v such that {u, v} in P do
9		if v.color == black
10			print "Tarjan's lowest common Ancestor of " + u + 
				  " and " + v + " is " + Find(v).ancestor + "."</span>
		

以下首先对算法导论中的习题进行证明:

(1)证明:对每一对,第10行恰运行一次

证明:由于每一个节点仅仅调用一次LCA,对随意节点对,不失一般性。如果先被处理完,则当的全部儿子都处理完。被置为Black,此时v仍为White。仅仅有当v处理完其子树,被置为Black。才干进入第10行的代码。因此对每一对查询。第10行仅仅运行一次。

(2)证明:在调用LCA()时,不相交集合数据结构中的集合数等于在树T中的深度

证明:调用LCA()时。以为根的子树均没有被訪问。

如果是其父节点的第个儿子节点,则对全部儿子节点,因为这些节点已经处理完成并返回。都进行了的操作,因此这些子树中的节点与在同一个集合中。

而对节点来说,其子树并未处理完成。所以对于的调用LCA()并没有返回。因此和其父节点在不同的集合中,同理能够一直推到根节点。

因此当前的集合数等于在树T中的深度。

(3)证明:对每一对。LCA能正确的输出的最小公共祖先

证明:

①若在同一条路径中,不失一般性。如果的祖先节点。则节点返回后两个节点均为BLACK,输出。正确

②否则,如果二者的近期公共祖先为,设在第个分支上。在第个分支上(),那么先被訪问到,在第9行代码处,因为尚未处理仍为White,所以返回,所在集合与其父节点所在集合Union,回到时集合代表元的ancestor被置为,然后才干继续处理。处理完时,进入第9行代码,此时的颜色已经为BLACK,输出。得到正确答案。

综上,LCA能正确输出的最小公共祖先。

二. 并查集优化——不相交集合森林

由于当中涉及到集合操作,因此使用了并查集来优化。并查集能够使用更快的实现。用有根树表示集合,每一个成员仅指向其父节点,每棵树的根包括集合的代表元素,代表元的父节点是其本身。

通过引入两种启示式策略(Union的时候按秩合并,Find的时候进行路径压缩)。能得到渐进最优的不相交集合数据结构。

按秩合并:在Union的时候,经常会碰到两个集合元素个数不一样,显然将小的集合纳入大的集合,操作成本更低。

由于使用的是有根树来表示集合,所以自然地能够用根节点(代表元)的高度来表示,这个就称为秩(rank)。在Union的过程中,让具有较小秩的根指向具有较大秩的根。若二者具有同样的秩,则任取当中一个作为父节点,并对它的秩加1。

(由于此时树的高度添加了1)。

路径压缩:普通的Find算法直接沿着节点路径向上查找到根。对一个具有n个节点的路径来说,对这n个节点都进行Find操作,每一个节点都须要沿着父节点搜到根。须要的操作。而优化的方法是:找到根之后。对这条查找路径上的节点,都将其父节点更新为根节点,即:一次Find操作将导致这条路径上的节点都直接指向根。

伪代码例如以下:

MakeSet(x)
	x.p = x
	x.rank = 0

Union(x, y)
	xRoot = Find(x)
	yRoot = Find(y)
	if xRoot.rank > yRoot.rank
		yRoot.p = xRoot
	else 
		xRoot.p = yRoot
		if xRoot.rank == yRoot.rank
			yRoot.rank = yRoot.rank + 1

Find(x)
	if x.p != x
		x.p = return Find(x.p)
	return x.p;
	

实际中Find能够用迭代取代递归。实际coding时要注意,parent这一结构是在并查集中用到的。ancestor是LCA算法中的,二者不能等同,而且ancestor也不是代表元,ancestor指的是代表元所在集合中全部节点的公共祖先。

题目:http://poj.org/problem?

id=1330 ,AC代码例如以下:

#include <iostream>
#include <cstring>
using namespace std;
#define N 10005

struct Edge{
	int to, next;
};
Edge e[N];
struct Node{
	int pa, rank;
	Node() : pa(0), rank(0) {}
};
Node nodes[N];

int head[N], cnt, q1, q2, ancestor[N];
bool hasp[N], color[N];

void add(int from, int to){
	e[cnt].to = to, e[cnt].next = head[from], head[from] = cnt;
	++cnt;
}

void make_set(int u){
	nodes[u].pa = u;
	nodes[u].rank = 0;
}

int find_set(int u){
	int root = u;
	while(nodes[root].pa != root)
		root = nodes[root].pa;
	int cur;
	while(u != root){
		cur = nodes[u].pa;
		nodes[u].pa = root;
		u = cur;
	}
	return root;
}

void union_set(int x, int y){
	int xr = find_set(x), yr = find_set(y);
	if (nodes[xr].rank > nodes[yr].rank)
		nodes[yr].pa = xr;
	else{
		nodes[xr].pa = yr;
		if(nodes[xr].rank == nodes[yr].rank)
			++nodes[yr].rank;
	}
}

bool LCA(int u){
	make_set(u);
	ancestor[u] = u;
	for(int i = head[u]; i; i = e[i].next){
		int v = e[i].to;
		if(LCA(v))
			return true;
		union_set(u, v);
		ancestor[find_set(u)] = u;
	}
	color[u] = true;
	bool fin = false;
	if(u == q1 && color[q2])
		cout << ancestor[find_set(q2)] << endl, fin = true;
	else if(u == q2 && color[q1])
		cout << ancestor[find_set(q1)] << endl, fin = true;
	return fin;
}

int main(){
	int tc;
	cin >> tc;
	while(tc --){
		int n;
		cin >> n;
		memset(head, 0, sizeof(head));
		memset(ancestor, 0, sizeof(ancestor));
		memset(color, false, sizeof(color));
		memset(hasp, false, sizeof(hasp));
		cnt = 1;
		for(int i = 1; i < n; ++i){
			int p, c;
			cin >> p >> c;
			add(p, c);
			hasp[c] = true;
		}
		cin >> q1 >> q2;
		int root = 0;
		for(int i = 1; i <= n; ++i){
			if(!hasp[i]){
				root = i;
				break;
			}
		}
		LCA(root);
	}
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值