6的变换_坐标变换(6)—齐次变换矩阵

7b336bb2a776307c75da916a84808631.png

前面的文章主要介绍了旋转矩阵,对于刚体的运动,除了旋转外还有平移。在机器人及自动驾驶中,经常用齐次变换矩阵将旋转和平移进行统一。 前面的文章也介绍过齐次变换矩阵,本文算是一个总结。

1. SE(3)

将旋转矩阵和平移向量写在同一个矩阵中,形成的

矩阵,称为special Euclidean group,即

很容易验证,齐次变换矩阵满足群所具有的性质,即封闭性,结合律,幺元,逆,所以称其为group是合理的。

此外齐次变换矩阵还能保持变换前后的距离和角度不变,假定

,同时
,则有,

2. 齐次变换矩阵的用法

2.1 描述坐标系

2ab3f1ea7b930735b0b9dc805118870b.png

如上图所示,

,假设fixed frame为
重合,则
,
,
可以描述为:

其中,

2.2 向量(坐标系)在不同坐标系下的描述

对于任意三个坐标系,

下为
,

下为

2.3 对向量(坐标系)进行平移和旋转

可以将齐次变换矩阵写为公式(6),这里将

改写为齐次形式
,为了便于标记,

假设body frame

相对于fixed frame
的描述为
,则下面讨论左乘和右乘
的区别,

以下图为例,假设

,
,分析左乘和右乘的区别,

6842f290dac78f158e32aa7e226ffe8c.png

首先是左乘,如上图左边所示,根据公式(9): 首先分析

首先以
为基准进行旋转,
为绕着
旋转
按照图中①的方式进行了旋转; 然后再左乘
,将①的结果沿着
移动2个单位,即得到图中②最终的结果。

其次是右乘,如上图右边所示,根据公式(10): 首先分析

首先以
为基准进行平移,即沿着
平移2个单位,
,即得到图中的①; 然后再右乘
,以
为基准进行旋转,即沿着
旋转
,得到图中②的结果。

综上所述,

左乘齐次矩阵,首先以

为基准进行旋转,然后以
为基准进行平移;

右乘齐次矩阵,首先以

为基准进行平移,然后以
为基准进行旋转。
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页