洗牌

洗牌在生活中十分常见,现在需要写一个程序模拟洗牌的过程。
现在需要洗2n张牌,从上到下依次是第1张,第2张,第3张一直到第2n张。首先,我们把这2n张牌分成两堆,
左手拿着第1张到第n张(上半堆),右手拿着第n+1张到第2n张(下半堆)。接着就开始洗牌的过程,先放下右手的
最后一张牌,再放下左手的最后一张牌,接着放下右手的倒数第二张牌,再放下左手的倒数第二张牌,直到最后放下
左手的第一张牌。接着把牌合并起来就可以了。
例如有6张牌,最开始牌的序列是1,2,3,4,5,6。首先分成两组,左手拿着1,2,3;右手拿着4,5,6。在洗牌过程中按
顺序放下了6,3,5,2,4,1。把这六张牌再次合成一组牌之后,我们按照从上往下的顺序看这组牌,就变成了序列
1,4,2,5,3,6。
现在给出一个原始牌组,请输出这副牌洗牌k次之后从上往下的序列。

屏幕快照 2016-08-17 下午8.49.22

分析

本题其实是序列按照一定规律来进行变换,假设牌的所在位置分别为i,j(从上往下看,从0开始)
那么映射关系如下:

  • j为奇数时,i = (2*n-1+j)/2
  • j为偶数时,i = j/2

优化:位置总是有限的,进行若干次变化后总会回到初始的状态,因此可以处理k,避免不必要的重复转换

  • 若左右手各有n张牌,那么洗2(n - 1)次后牌会回到原始状态

源程序

#include <iostream>
#include <vector>
using namespace std;

/*示例输入

7
3 1
1 2 3 4 5 6
3 2 
1 2 3 4 5 6
3 3 
1 2 3 4 5 6
3 4 
1 2 3 4 5 6
3 5 
1 2 3 4 5 6
3 6 
1 2 3 4 5 6
2 2
1 1 1 1
*/

/*示例输出
1 4 2 5 3 6
1 5 4 3 2 6 
1 3 5 2 4 6 
1 2 3 4 5 6
1 4 2 5 3 6 
1 5 4 3 2 6 
1 1 1 1
*/

void Print(const string& description,vector<int>& data)
{
    int len = data.size();
    cout << endl << description;
    for(int i = 0;i < len;++ i)
        cout << data[i] << " ";
    cout << endl;
    return;
}

void Process(int n,int k,vector<int>& data)
{
    //洗2 * (n - 1)次后,牌恢复到最初始的状态
    int round = 2 * (n - 1);
    //剩下的需要洗的次数
    int rest = k % round;
    int amout = 2*n;

    vector<int> tempdata(data);
    // Print("tempdata",tempdata);
    std::vector<int>& v_new = tempdata;
    std::vector<int>& v_old = data;
    std::vector<int>& v_temp = data;

    for(int j = 0;j < rest;++ j)
    {
        //根据洗牌规则,假设洗牌前后牌的index分别为i,j(从上往下看,从0开始)
        // 那么存在如下关系
        // j为奇数时,i = (2*n-1+j)/2
        // j为偶数时,i = j/2

        for(int i = 0;i < amout;++ i)
        {
            if(i % 2)
                v_new[i] = v_old[(2 * n - 1 + i)/2] ;
            else
                v_new[i] = v_old[i / 2];
        }
        //交换两个引用,使得下一次新的数据仍存在v_new所指向的vector中
        v_temp = v_new;
        v_new = v_old;
        v_old = v_temp;
    }
    for(int j = 0;j < amout;++ j)
    {
        cout << v_new[j] << " ";
    }
    cout << endl;
}

int main()
{
    int t,n,k;
    cin >> t;
    for(int i = 0; i < t;++ i)
    {
        cin >> n >> k;
        vector<int> data;
        int len = 2 * n;
        int num;
        for(int j = 0;j < len;++ j)
        {
            cin >> num;
            data.push_back(num);
        }
        Process(n,k,data);
    }
    return 0;
}

转载于:https://www.cnblogs.com/rainySue/p/xi-pai.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值