1.字符串的存储结构
顺序存储结构
用一组地址连续的存储单元来存储 字符序列。
1.预定义的大小(每个字符串变量分配一个固定铲毒的存储区)。
2.一般用定长数组来定义。
链式存储结构
1.空间分配灵活
2.BF算法
Brute Force(野兽、暴力)时间复杂度: O(m*n)<= (m-n+1)*n


3.KMP算法
看毛片算法-KMP算法(避免重复遍历的情况)
模式匹配方法:
时间复杂度:O(m+n)

1.KMP算法原理:
@author:阮一峰
@location:http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html
举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?
1.首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

2.因为B与A不匹配,搜索词再往后移。

3.就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

4.接着比较字符串和搜索词的下一个字符,还是相同。

5.直到字符串有一个字符,与搜索词对应的字符不相同为止。

6.这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

7.一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

8.怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。
这张表是如何产生的?

下面介绍《部分匹配表》是如何产生的。
首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

"部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,
- "A"的前缀和后缀都为空集,共有元素的长度为0;
- "AB"的前缀为[A],后缀为[B],共有元素的长度为0;
- "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;
- "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;
- "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;
- "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;
- "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。
"部分匹配"的实质是,有时候,字符串头部和尾部会有重复。
比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。
搜索词移动的时候,第一个"AB"向后移动4位(已匹配字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

9.已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
因为 6 - 2 等于4,所以将搜索词向后移动4位。
10.因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

11.因为空格与A不匹配,继续后移一位。

12.逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

13.逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

KMP算法优化:

#!/usr/bin/python
# coding=utf8
"""
介绍:
1.KMP-俗称:看毛片算法
2.还有一个专业名词叫:模式匹配算法(按照某种方式来匹配字符串)
思想:
移动位数 = 已匹配的字符数 - 对应的部分匹配值
例如:ABDAB
前缀: ['A', 'AB', 'ABD', 'ABDA']
后缀: ['BDAB', 'DAB', 'AB', 'B']
然后取一个交集。但是注意:(如果都是AAA, 那么数组可能不止一个,所以需要排序,取最后一个值)
交集: ['AB']
那么数组都排序取最后一个吧。
"""
# pStr 表示 partSearch要处理的字符串
def partSearch(pStr):
# 前缀
prefix = [pStr[:i+1] for i in range(len(pStr)-1)]
# 后缀
postfix = [pStr[i+1:] for i in range(len(pStr)-1)]
# 排序后的交集
intersection = sorted(list(set(prefix) & set(postfix)))
# print intersection
if intersection:
# 返回 数组最后一个值的长度
return [len(intersection[-1]), len(intersection)]
return [0, 0]
# pStr表示父字符串, sStr表示子字符串
def kmpSearch(pStr, sStr):
i = 0
# 最多循环的次数
while i < len(pStr) - len(sStr) + 1:
match = True
# 顺序比较数组的元素是否相同,而j则表示顺序匹配的字符数
for j in range(len(sStr)):
if pStr[i+j] != sStr[j]:
match = False
break
print pStr[i:]
print sStr
if match:
return True
"""
如果有部分匹配, 即 j>0 :
移动位数 = 已匹配的字符数 – 对应的部分匹配值
如果没有匹配,就向前移动一位
"""
if j:
# kmp优化,重复数据的出现问题。
if partSearch(sStr[:(j)])[1]>1 and j+1 < len(sStr) and sStr[j-1]==sStr[j] :
print '-----', sStr[j], sStr[j-1], sStr[j+1]
i += partSearch(sStr[:(j)])[0]+2
# 正常kmp算法代码部分
else :
i += j - partSearch(sStr[:j])[0]
else:
i += 1
print "i=%s, j=%s" % (i, j), "****"*30
# 如果循环完毕,还是无法匹配,则返回False
return False
if __name__ == "__main__":
pStr="ABDAB"
# pStr="AAAAAB"
# partSearch(pStr)[0]
kStr="BAAAAABDAAEABCDERDABDABBBB"
result=kmpSearch(kStr, pStr)
print result