模式识别之聚类---聚类和分类的区别

http://www.cnblogs.com/zhangchaoyang/articles/2624882.html 高斯聚类

http://www.cnblogs.com/zhangchaoyang/p/4385011.html

 

向量刻画对象,矩阵刻画运动,用矩阵和向量的乘法施加运动

 

矩阵的本质居然是运动的描述,线性空间的变化跃迁,选定一组基可以做一次线性变换,换一组基,变换又不同,对象变化等价于坐标系的变换,也是坐标的变换

几乎所有的图形学变化都是4x4的

数学分析的本质思想精华是:

一个对象可以表达为无穷多个合理选择的对象的线性和

 

 

让我们想想,达成同一个变换的结果,比如把点(1, 1)变到点(2, 3)去,你可以有两种做法。第一,坐标系不动,点动,把(1, 1)点挪到(2, 3)去。第二,点不动,变坐标系,让x轴的度量(单位向量)变成原来的1/2,让y轴的度量(单位向量)变成原先的1/3,这样点还是那个点,可是点的坐标就变成(2, 3)了,方式不同,结果一样。     
从第一个方式来看,那就是我在《理解矩阵》1/2中说的,把矩阵看成是运动描述,矩阵与向量相乘就是使向量(点)运动的过程。在这个方式下, Ma = b  的意思是:  
“向量a经过矩阵M所描述的变换,变成了向量b。”  
而从第二个方式来看,矩阵M描述了一个坐标系,姑且也称之为M。那么:  Ma = b  
意思是: 
 “有一个向量,它在坐标系M的度量下得到的度量结果向量为a,那么它在坐标系I的度量下,这个向量的度量结果是b。” 
这里的I是指单位矩阵,就是主对角线是1,其他为零的矩阵。  
而这两个方式本质上是等价的。  
我希望你务必理解这一点,因为这是本篇的关键。  正因为是关键,所以我得再解释一下。  
在M为坐标系的意义下,如果把M放在一个向量a的前面,形成Ma的样式,我们可以认为这是对向量a的一个环境声明。它相当于是说: 
 “注意了!这里有一个向量,它在坐标系M中度量,得到的度量结果可以表达为a。可是它在别的坐标系里度量的话,就会得到不同的结果。为了明确,我把M放在前面,让你明白,这是该向量在坐标系M中度量的结果。”  那么我们再看孤零零的向量b:  
b  
 多看几遍,你没看出来吗?它其实不是b,它是:   Ib  
也就是说:“在单位坐标系,也就是我们通常说的直角坐标系I中,有一个向量,度量的结果是b。”  而 Ma = Ib的意思就是说:  
 “在M坐标系里量出来的向量a,跟在I坐标系里量出来的向量b,其实根本就是一个向量啊!” 这哪里是什么乘法计算,根本就是身份识别嘛。 

 

 

 

 

从这个意义上我们重新理解一下向量。向量这个东西客观存在,但是要把它表示出来,就要把它放在一个坐标系中去度量它,然后把度量的结果(向量在各个坐标轴上的投影值)按一定顺序列在一起,就成了我们平时所见的向量表示形式。你选择的坐标系(基)不同,得出来的向量的表示就不同。向量还是那个向量,选择的坐标系不同,其表示方式就不同。因此,按道理来说,每写出一个向量的表示,都应该声明一下这个表示是在哪个坐标系中度量出来的。表示的方式,就是 Ma,也就是说,有一个向量,在M矩阵表示的坐标系中度量出来的结果为a。我们平时说一个向量是[2 3 5 7]T,隐含着是说,这个向量在 I 坐标系中的度量结果是[2 3 5 7]T,因此,这个形式反而是一种简化了的特殊情况。 
注意到,M矩阵表示出来的那个坐标系,由一组基组成,而那组基也是由向量组成的,同样存在这组向量是在哪个坐标系下度量而成的问题。也就是说,表述一个矩阵的一般方法,也应该要指明其所处的基准坐标系。所谓M,其实是 IM,也就是说,M中那组基的度量是在 I 坐标系中得出的。从这个视角来看,M×N也不是什么矩阵乘法了,而是声明了一个在M坐标系中量出的另一个坐标系N,其中M本身是在I坐标系中度量出来的。 
 回过头来说变换的问题。我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象”我们找到了,就是那个向量。但是坐标系的变换呢?我怎么没看见?  
请看:  Ma = Ib  
我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a在I中一量,就得到b了。 
我建议你此时此刻拿起纸笔,画画图,求得对这件事情的理解。比如,你画一个坐标系,x轴上的衡量单位是2,y轴上的衡量单位是3,在这样一个坐标系里,坐标为(1,1)的那一点,实际上就是笛卡尔坐标系里的点(2, 3)。而让它原形毕露的办法,就是把原来那个坐标系: 2 0  0 3  
的x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3,这样一来坐标系就变成单位坐标系I了。保持点不变,那个向量现在就变成了(2, 3)了。 被矩阵:  1/2   0  0   1/3  
左乘。而这个矩阵就是原矩阵的逆矩阵。 
 “对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘。”   再一次的,矩阵的乘法变成了运动的施加。只不过,被施加运动的不再是向量,而是另一个坐标系。 
如果你觉得你还搞得清楚,请再想一下刚才已经提到的结论,矩阵MxN,一方面表明坐标系N在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN。 
在这里,我实际上已经回答了一般人在学习线性代数是最困惑的一个问题,那就是为什么矩阵的乘法要规定成这样。简单地说,是因为:  

 

 

 

 

 

 

http://news.cnblogs.com/n/534606/ 程序员的笑话

 

http://baike.baidu.com/link?url=MtpfHdoIQczsXvsLSUGJ8ELv-U7JLB_ZRicUgeLpxWRI8MVgP4RZErAtxYXUtsDTHrAfWPjK8npm-4lVKFHWKK 量子可以用矩阵运动表示,是不可分的最小化单位,能量的整数倍,是不连续的物质,即非线性化

http://finance.ifeng.com/a/20151214/14122501_0.shtml

 http://baike.baidu.com/link?url=GA67cKeZ079axlzRlrboEgFxdyRsUfHh4LhrwA0gZAN5KhEH-2Kmt34UQe3VbL9kmSIUU3OPP771Qp3f7IcwaDJl7cu_b42bwgsiYAhbcOy 梯度是方向场的变化,是导数也是,斜率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值