Parse xml/json[xpath/jpath]

本文深入探讨了使用Groovy语言进行XML解析和JSON路径解析的方法,包括XMLSlurper、XmlParser、GroovyUtils.getXmlHolder().getDomNodes()等工具的应用,以及如何使用JsonPath读取JSON数据。文章详细介绍了两种解析方式的特点和适用场景,并通过实例演示了如何获取特定节点属性和JSON数组元素。
import groovy.util.XmlSlurper
import groovy.util.XmlParser
import com.eviware.soapui.support.GroovyUtils
import com.jayway.jsonpath.*

def xmlStr = '<root><one a1="uno!"/><one a1="aaa"/><two>Some text!</two></root>'
def rootNode

// use XmlSlurper to parse xml, return GPathResult instances
rootNode = new XmlSlurper().parseText(xmlStr)
assert rootNode.name() == "root"
assert rootNode.one[0].@a1 == "uno!"
assert rootNode.two == "Some text!"

// use XmlParser to parse xml, return Node objects
rootNode = new XmlParser().parseText(xmlStr)
assert rootNode.name() == "root"
assert rootNode.one[0].@a1 == "uno!"
assert rootNode.one[0]["@a1"] == "uno!"
assert rootNode.one[0].attribute("a1") == "uno!"
assert rootNode.two.text() == "Some text!"
rootNode.children().each { assert it.name() in ['one','two'] }

/*
 * When to use XmlSlurper or XmlParser?
 * If you want to transform an existing document to another then XmlSlurper will be the choice.
 * If you want to update and read at the same time then XmlParser is the choice.
 * If you just have to read a few nodes XmlSlurper should be your choice, since it will not have to create a complete structure in memory".
 */

// use GroovyUtils.getXmlHolder().getDomNodes() to parse xml with xpath
def groovyUtils = new GroovyUtils(context)
def xmlHolder = groovyUtils.getXmlHolder(xmlStr)
def nodesArray = xmlHolder.getDomNodes("//one")
def oneNodeAttrValue = nodesArray[1].getAttribute("a1")
log.info oneNodeAttrValue

// use JsonPath.read() to parse json with jpath
def jsonStr = '{"store":{"book":[{"category":"reference","author":"Nigel Rees","title":"Sayings of the Century","price":8.95},{"category":"fiction","author":"Evelyn Waugh","title":"Sword of Honour","price":12.99}],"bicycle":{"color":"red","price":19.95}},"expensive":10}'
def authors = JsonPath.read(jsonStr, '$.store.book[*].author')
log.info authors

 

转载于:https://www.cnblogs.com/testing-life/p/5550169.html

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值