与三角有关的级数求和

壁纸:C:\Users\Administrator\AppData\Local\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Assets

C:\Users\%username%\AppData\Local\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Assets\

新的文件夹内新建一个rename的txt文档,里面写上命令ren * *.jpg,然后修改成bat格式后双击就能完成所有图片添加为jpg的格式后缀.


Does $S_k= \sum \limits_{n=1}^{\infty}\sin(n^k)/n$ converge for all $k>0$?

**Motivation**: I recently learned that $S_1$ [converges](http://en.wikipedia.org/wiki/Dirichlet%27s_test). I think $S_2$ converges by the integral test. Was the question known in general?

来源:https://math.stackexchange.com/questions/2270/convergence-of-sum-limits-n-1-infty-sinnk-n


This is a replacement for my previous answer. The sum converges, and this fact needs even more math than I believed before.

Begin by using summation by parts. This gives
$$\sum_{n=1}^N \left(\sum_{m=1}^N \sin(m^k) \right) \left( \frac{1}{n}-\frac{1}{n+1}\right) + \frac{1}{N+1} \left(\sum_{m=1}^N \sin(m^k) \right).$$
Write $S_n:= \left(\sum_{m=1}^n \sin(m^k) \right)$. So this is
$$\sum_{n=1}^N S_n/(n(n+1)) + S_N/(N+1).$$
The second term goes to zero by Weyl's [polynomial equidistribution theorem][1]. So your question is equivalent to the question of whether $\sum s_n/(n(n+1))$ converges. We may as well clean this up a little: Since $|S_n| \leq n$, we know that $\sum S_n \left( 1/n(n+1) - 1/n^2 \right)$ converges. So the question is whether
$$\sum \frac{S_n}{n^2}$$
converges.

I will show that $S_n$ is small enough that $\sum S_n/n^2$ converges absolutely.

The way I want to prove this is to use [Weyl's inequality][2]. Let $p_i/q_i$ be an infinite sequence of rational numbers such that $|1/(2 \pi) - p_i/q_i| < 1/q_i^2$. Such a sequence exists by a standard lemma. Weyl inequality gives that
$$S_N = O\left(N^{1+\epsilon} (q_i^{-1} + N^{-1} + q_i N^{-k})^{1/2^{k-1}} \right)$$
for any $\epsilon>0$.

<hr>

Thanks to George Lowther for pointing out the next step: According to [Salikhov][3], for $q$ sufficiently large, we have
$$|\pi - p/q| > 1/q^{7.6304+\epsilon}.$$
Since $x \mapsto 1/(2x)$ is Lipschitz near $\pi$, and since $p/q$ near $\pi$ implies that $p$ and $q$ are nearly proportional, we also have the lower bound $|1/(2 \pi) - p/q|> 1/q^{7.6304+\epsilon}$.

Let $p_i/q_i$ be the convergents of the continued fraction of $1/(2 \pi)$. By a standard result, $|1/(2 \pi) - p_i/q_i| \leq 1/(q_i q_{i+1})$. Thus, $q_{i+1} \leq q_i^{6.6304 + \epsilon}$ for $i$ sufficiently large. Thus, the intervals $[q_i, q_i^{7}]$ contain all sufficiently large integers.

For any large enough $N$, choose $q_i$ such that $N^{k-1} \in [q_i, q_i^7]$. Then Weyl's inequality gives the bound
$$S_N = O \left( N^{1+\epsilon} \left(N^{-(k-1)/7} + N^{-1} + N^{-1} \right)^{1/2^{k-1}}\right)$$

So $S_N = O(N^{1-(k-1)/(7\cdot 2^{k-1}) + \epsilon})$, which is enough to make sure the sum converges.
${ }{}{}{}{}$

[1]: http://terrytao.wordpress.com/2010/03/28/254b-notes-1-equidistribution-of-polynomial-sequences-in-torii/
[2]: http://en.wikipedia.org/wiki/Weyl%27s_inequality
[3]: http://mathworld.wolfram.com/IrrationalityMeasure.html

 

转载于:https://www.cnblogs.com/Eufisky/p/9749159.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数学·统计学系列:三角级数论 作 者: (英)哈代 ,(英)罗戈辛斯基 著,徐瑞云 ,王斯雷 译 出版时间:2013 丛编项: 数学·统计学系列 内容简介   《数学·统计学系列:三角级数论》以现代的观点简明而完整地讲述傅里叶级数的基础理论,全书共分7章。第1章讲述预备性知识;第2,3章讲傅里叶级数的性质;第4章讲傅里叶级数的收敛性及其判别法;第5章、第6章讲傅里叶级数的求和法及其应用;最后一章讲一般的三角级数。另有一个附录。对全书主要内容的来源作了一个综述。 目录 第1章 通论 1.1 三角级数 1.2 三角级数与调和函数 1.3 Fourier三角级数 1.4 测度和积分 1.5 1p类 1.6 1p空间及其度量 1.7 1p中的收敛 (强收敛) 1.8 两个周期函数的折合 1.9 12中的直交系 1.1 0直交系的例子 1.1 1一些进一步的知识 第2章 Hi1bert空间中的Fourier级数 2.1 L2中一般的Fourier级数 2.2 Riesz-Fischer定理 2.3 完备系和Parseva1定理 2.4 Mercer定理 2.5 封闭性和完备性 2.6 三角函数系的完备性 2.7 三角级数的Parseval定理和Riesz-Fischer定理 2.8 关于其他函数系的一些定理 2.9 Weierstrass定理 第3章 Fourier三角级数的其他性质 3.1 Fourier常数的简单性质 3.2 Riemann-1ebesgue定理 3.3 几个简单不等式 3.4 Fourier常数的数量级 3.5 有界变差函数 3.6 几个基本公式 3.7 一个特殊的三角级数 3.8 Fourier级数的积分 3.9 一个基本的收敛定理 3.1 0具有递降系数的级数 3.1 1 具有递降系数的级数 (续) 3.1 2 Gibbs现象 第4章 Fourier级数的收敛性 4.1 引言 4.2 Fourier级数的收敛问题 4.3 在一点的连续条件 4.4 Dini判别法 4.5 有界变差函数:Jordan判别法 4.6 1ebesgue判别法 4.7 一致收敛的其他判别法 4.8 共轭级数 4.9 共轭级数的收敛问题 4.1 0共轭级数的收敛判别法 4.1 1 sn (瑁┖蛃n (瑁┑氖?考叮 4.1 2在连续点的发散性 4.1 3就范直交系的1ebesgue函数 4.1 4三角函数系 (T)的1ebesgue常数 第5章 Fourier级数的求和 5.1 引言 5.2 线性的正则求和法 5.3 (C,1)求和法以及A-求和法 5.4 K-求和法及其核 5.5 Fourier级数在连续点或跳跃点的求和 5.6 几乎处处可求和 5.7 Fourier级数的 (C,1)求和 5.8 共轭级数的 (C,1)求和 5.9 A求和 5.1 0共轭级数的A求和 5.1 1定理70至定理76的一些应用 5.1 2 Fourier级数的导级数 第6章 第5章 定理的应用 6.1 引言 6.2 一个几乎处处发散的Fourier级数 6.3 具有正系数的Fourier级数 6.4 Ko1mogoroff的另一定理 6.5 Fourier级数的强性求和 6.6 其他求和法 6.7 应用 6.8 共轭函数的存在性 6.9 Fourier级数的收敛因子 6.10 Kuttner定理 第7章 一般三角级数 7.1 通论 7.2 收敛的三角级数的系数 7.3 Riemann求和法 7.4 连续函数的广义二阶导数 7:5关于凸函数的一个定理 7.6 Cantor定理和du Bois-Reymond定理 7.7 无界函数,dela Vallé;e-Poussin定理 7.8 更一般的情形 附录 编辑手记

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值