HDFS存储原理

原文链接:https://my.oschina.net/firepation/blog/2231607

1. 引言

在整个 hadoop 框架中,主要存在三个组件:HDFS、MapReduce 和 YARN,HDFS 主要负责数据的存储,MapReduce 则数据模型的运算,YARN 负责资源的调度。接下来的博文会对这几个组件进行一一介绍,这篇博文先聊一聊 HDFS 的存储原理。

2. HDFS实现机制

HDFS 主要是为了应对海量数据的存储,由于数据量非常大,因此一台服务器是解决不能够应付的,需要一个集群来存储这些数据。在这个集群中,存在一个 NameNode 节点,该节点用于管理元数据,即用户上传的文件位于哪个服务器上,都多少个副本等信息。此外,还有多个 DataNode 节点,这些节点就是文件存储位置。文件存储到集群中需要考虑以下这几个问题:

  1. 保证数据的安全性,即数据应该有足够多的副本
  2. 能够适应高并发的访问
  3. 因为这些数据是存储在多个服务器上的,因此需要保证每个服务器的负载均衡

HDFS 的设计很巧妙,完美的解决了这几个问题。当用户上传一个文件时,会提供一个 虚拟路径,该路径是方便客户端对文件进行读写操作的,NameNode 中存在该路径和真实的存储物理路径的映射。NameNode 会先判断上传的文件是否存在,如果不存在,则允许用户继续上传。

客户端收到服务器允许上传文件的响应之后,会将该文件分为一个个块(block),每个块默认大小为 128MB,将每个块依次发送到 Datanode 中,由 NameNode 记录块的存储位置等信息存储在元数据中。为了保证数据有足够多的副本,这时服务器会进行一个异步的操作,将这个块再进行复制操作,随机存储到一个 DataNode 中(这里随机存储是为了保证服务器的负载均衡,避免多个客户端对同一个文件进行访问,这个文件和其副本都存储在同一个 DataNode 节点上的情况)。存储的大致过程如下:

HSFD存储

3. NameNode 工作原理

上面讲述了 HDFS 的实现机制,不过这样存储实际上只解决了两个问题:数据的安全性和每个服务器的负载均衡,但是当多个客户端同时上传文件时,都需要访问 NameNode 节点,在这种高并发的情况下,NameNode 是如何应付的呢?

上面说过,NameNode 是通过元数据来定位文件的存储路径的,如果元数据只是存储在磁盘文件中,当多个客户端同时访问时,响应速度就会受到限制。HDFS 是这样解决这个问题的:首先,会有一个 fsimage 文件,用于存储所有的元数据,fsimage 文件中的数据会 加载到内存中,这样就提高了读取文件的速度。除此之外,还有一个 edits log 文件用于存储最新上传文件的元数据,这个文件大小是有限制的,一般为 64MB。当 edits log 文件存储大小达到 64MB 时,就会将这些元数据添加到 fsimage 文件中。整个操作流程如下:

NameNode存储机制1

通过这样的设计,由于内存读取数据非常快,因此能够适应多个客户端同时访问的压力。而且当服务器碰到意外情况时,例如突然断电或者服务器崩溃等情况,虽然内存中的元数据会丢失,但由于 edits log 和 fsimage 存储着元数据,依然可以找到文件存储的真实路径,只是在服务器恢复之前不能够再进行上传和下载操作了。(不过有一个 HA 机制可以避免 NameNode 崩溃之后还可以继续提供服务,这个稍后再进行了解。)

由于 edits log 是日志,其存储的格式与元 fsimage 存储的元数据格式不一样,在进行合并操作时,需要进行额外的逻辑运算,如果这些运算直接在 NameNode 中进行的话,无疑会增大 CPU 的负荷,HDFS 便将这些操作放在 Secondary Node 中进行,整个过程如下:

SecondaryNode作用

:这是我对 HDFS 存储机制的理解,由于刚开始接触 HDFS,因此文中可能会有错误,欢迎指正。

转载于:https://my.oschina.net/firepation/blog/2231607

展开阅读全文
博主设置当前文章不允许评论。

Hdfs存储原理

08-22

HDFS实现思想:rn1.hdfs是通过分布式集群来存储文件rn2.文件存储到hdfs集群中去时被切分成blockrn3.文件的block存放在若干Datanode节点上rn4.hdfs文件系统中的文件与真实的block之间有映射关系,有Namenode管理rn5.每一个block在集群中会存储多个副本,可以提高数据可靠性和访问吞吐量rnrn工作原理:客户端存储数据内容到某一个路径下,首先发送申请去Namenode节点。Namenode节点查询存储内容是否存在,若不存在则Namenode返回给客户端许可,客户端将内容分配到Datanode上。rn 客户端存入数据将信息传入Namenode,Namenode将存储记录存入edits log;rn namenode返回客户端存储分配的Datanode;rn 客户端向Namenode中的block中写入存储文件rn 写完一个block将edits log中的记录更新到Namenode的内存中rn Namenode中的内存与fsimage互为镜像,fsimage中存储着数据内容rnrnedits log中的新存储记录与fsimage合并:rn Namenode内存中有元数据,磁盘上的文件fsimage中也存有元数据,而日志edits log中存着最新的存储记录。当edits log中存储记录存满后,SecondaryNamenode进行checkpoint操作:SecondaryNamenode向Namenode发出信号使Namenode停止向edits log中写数据,此时Namenode产生一个新的日志文件New edits log记录客户端上传的文件。而Namenode中的fsimage和edits log被下载到SecondaryNamenode中进行合并成一个新的元数据镜像文件,生成后上传给Namenode。新的元数据文件将替换原来的文件,New edits log也会替换原来的edits log日志。rn 论坛

hdfs 原理及指令

10-14

rnrn简介rnHDFS(Hadoop Distributed File System )Hadoop分布式文件系统。是根据google发表的论文翻版的。论文为GFS(Google File System)Google 文件系统。rnHDFS有很多特点: rn ① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。rn ② 运行在廉价的机器上。rn ③ 适合大数据的处理。多大?多小?HDFS默认会将文件分割成block,128M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中(namenode)。如果小文件太多,那内存的负担会很重。rn rn如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。rnNameNode:是Master节点,是管理者。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;rn NameNode保存的metadata包括rn 文件ownership和permissionrn 文件包含的block信息rn Block保存在那些DataNode节点上(这部分数据并非保存在NameNode磁盘上的,它是在DataNode启动时上报给NameNode的,Name接收到之后将这些信息保存在内存中)rn NameNode的metadata信息在NameNode启动后加载到内存中rn Metadata存储到磁盘上的文件名称为fsimagern Block的位置信息不会保存在fsimage中rn Edits文件记录了客户端操作fsimage的日志,对文件的增删改等。rn 用户对fsimage的操作不会直接更新到fsimage中去,而是记录在edits中rnSecondaryNameNode:分担namenode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。rn 合并fsimage和fsedits文件,然后发送并替换NameNode的fsimage文件,同时自己留下一个副本。这个副本可供NameNode毁灭之后的部分文件恢复。rn 1可以通过配置fs.checkpoint.period修改合并间隔时间,默认1小时rn 2也可以通过配置edits日志文件的大小,fs.checkpoint.size规定edits文件的最大值,来让SecondaryNameNode来知道什么时候该进行合并操作了。默认是64Mrn 合并过程如下:rn rnDataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。rn热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。rn冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。rnfsimage:元数据镜像文件(文件系统的目录树。)rnedits:元数据的操作日志(针对文件系统做的修改操作记录)rnnamenode内存中存储的是=fsimage+edits。rnSecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。rn rnHDFS优点rn高容错性rn 数据自动保存多个副本rn 副本丢失后,自动回复rn适合批处理rn 移动的计算和操作rn 数据位置暴漏给计算框架rn适合大数据处理rn GB、TB、PB甚至更大rn 百万规模以上的文件数量rn 10K+节点rn可构建在廉价的机器上rn 通过副本提高可靠性rn 提供了容错和恢复机制rnHDFS缺点rn低延迟数据访问rn 毫秒级读取rn 低延迟与高吞吐量rn小文件存取rn 占用NameNode内存空间rn 寻址时间超过读取时间rn并发写入、文件随即修改rn 一个文件同时只能由一个写入者rn 仅支持appendrn rn rn工作原理rn写操作:rn rn rn rn有一个文件FileA,100M大小。Client将FileA写入到HDFS上。rnHDFS按默认配置。rnHDFS分布在三个机架上Rack1,Rack2,Rack3。rn rna. Client将FileA按64M分块。分成两块,block1和Block2;rnb. Client向nameNode发送写数据请求,如图蓝色虚线①------>。rnc. NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②--------->。rn Block1: host2,host1,host3rn Block2: host7,host8,host4rn 原理:rn NameNode具有RackAware机架感知功能,这个可以配置。rn 若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。rn 若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。rnd. client向DataNode发送block1;发送过程是以流式写入。rn 流式写入过程,rn 1>将64M的block1按64k的package划分;rn 2>然后将第一个package发送给host2;rn 3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;rn 4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。rn 5>以此类推,如图红线实线所示,直到将block1发送完毕。rn 6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示。rn 7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线rn 8>发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。rn 9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图浅绿色实线所示。rn 10>client向NameNode发送消息,说我写完了,如图黄色粗实线。。。这样就完毕了。rn分析,通过写过程,我们可以了解到:rn ①写1T文件,我们需要3T的存储,3T的网络流量带宽。rn ②在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。rn ③挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。rn rn读操作:rn rn rn读操作就简单一些了,如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。 rn rn那么,读操作流程为:rna. client向namenode发送读请求。rnb. namenode查看Metadata信息,返回fileA的block的位置。rn block1:host2,host1,host3rn block2:host7,host8,host4rnc. block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;rn rn上面例子中,client位于机架外,那么如果client位于机架内某个DataNode上,例如,client是host6。那么读取的时候,遵循的规律是:rn优选读取本机架上的数据。rn HDFS文件权限rn与Linux文件权限类似rnr:read;w:write;x:executern如果Linux系统用用户xxx使用hadoop命令创建一个文件,那么,在hdfs中这个文件的owner就是xxxrnHDFS的权限目的是将控制权交出去,本身只判断用户和权限,至于用户是不是真的,不管。rnHDFS安全模式rnNameNode启动的时候,首先讲fsimage载入内存,然后按照fsedits中的各项操作修改内存中的fsimage。rn当元数据文件在内存中创建完成之后,在NameNode上创建一个新的fsimage替换原fsimage,同时创建一个空的fsedits文件(无需SecodaryNameNode参与)rn这时,NameNode是运行在安全模式的。即对外(客户端)只读,所以此段时间内对hdfs的写入、删除、重命名都会失败。rn然后NameNode收集各个DataNode的报告,当block达到最小副本数以上时,会被认为“安全”的了,在一定比例的数据块被确定为“安全”后,再过若干事件后,安全模式结束。rn当检测到副本数不足的数据块时,该块会被复制,直到达到最小副本数。rnHdfs中数据块的位置并不是由namenode维护的,而是以块列表的形式存储在datanode中的。rn rn rn rn rn rn rn rnHDFS中常用到的命令rn1、hdfs fsrn1rn2rn3rn4rn5rn6rn7rn8rn9rn10rn11rn12rn13rnhdfs fs -ls /rnhdfs fs -lsrrnhdfs fs -mkdir /user/hadooprnhdfs fs -put a.txt /user/hadoop/rnhdfs fs -get /user/hadoop/a.txt /rnhdfs fs -cp src dst //hdfs 之间复制rnhdfs fs -mv src dstrnhdfs fs -cat /user/hadoop/a.txtrnhdfs fs -rm /user/hadoop/a.txtrnhdfs fs -rmr /user/hadoop/a.txtrnhdfs fs -text /user/hadoop/a.txtrnhdfs fs -copyFromLocal localsrc dst 与hadoop fs -put功能类似。rnhdfs fs -moveFromLocal localsrc dst 将本地文件上传到hdfs,同时删除本地文件。rn2、hdfs fsadmin rn1rn2rn3rnhdfs dfsadmin -reportrnhdfs dfsadmin -safemode enter | leave | get | wait //wait 等待离开安全模式rnhdfs dfsadmin -setBalancerBandwidth 1000 //临时设置带宽rn3、hdfs fsckrn4、start-balancer.shrn负载均衡,可以使DataNode节点上选择策略重新平衡DataNode上的数据块的分布rn rn 论坛

没有更多推荐了,返回首页