概念
高德纳箭号表示法是种用来表示很大的整数的方法,由高德纳于1976年设计。它的意念来自幂是重复的乘法,乘法是重复的加法。
定义
计算
一个箭头
2↑3=2×2×2=8
2↑4=2×2×2×2=16
3↑3=3×3×3=27
a↑b=

两个箭头
2↑↑3=2↑2↑2(注意:此处要从右往左计算)=2↑4=16
3↑↑3=3↑3↑3=3↑27=
=7625597484987

4↑↑3=4↑4↑4=4↑256≈

a↑↑b=
三个箭头
2↑↑↑3=2↑↑2↑↑2=2↑↑2↑2=2↑↑4=2↑2↑2↑2=2↑2↑4=2↑16=65536
3↑↑↑3=3↑↑3↑↑3=3↑↑7625597484987=3^3^3^3……(7625597484987个3)
a↑↑↑b=
PS:以上内容来自百度百科:https://baike.baidu.com/item/%E9%AB%98%E5%BE%B7%E7%BA%B3%E7%AE%AD%E5%8F%B7%E8%A1%A8%E7%A4%BA%E6%B3%95/6327240
下面是关于高德纳箭号表示法的python代码
#Author:shijt #一个箭号时计算方法 def g(n,m): product=n**m return product #二个箭号时计算方法 def g2(m,n): result=g(m,m) for i in range(1,n-1): print("g2",i,result) result=g(m,result) return result # x个箭号时计算方法,未验证 def gx(m,x,n): if(x>2): result=gx(m,x-1,m) for i in range(1,n-1): print("gx=",x, i, result) #递归 result = gx(m,x-1, result) return result elif(x==2): return g2(m,n) elif (x == 1): return g(m,n) else: return "error" print(gx(3,3,3))
代码执行后,电脑已经快卡死了,所以我也不知道gx这个方法是否正确,至于秒天秒地的葛立恒数,暂时没有办法表示出来。
以上