对那个树进行dfs,在动态维护那个当前的冰激凌集合的时候,显然某种冰激凌仅会进出集合各一次(因为在树上形成连通块)。
于是显然可以对当前的冰激凌集合贪心染色。暴力去维护即可。具体实现看代码。map不必要。
#include<cstdio>
#include<set>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
map<int,bool>tag;
int v[600010],next[600010],first[300010],e;
void AddEdge(int U,int V){
v[++e]=V;
next[e]=first[U];
first[U]=e;
}
vector<int>ice[300010];
int n,m,col[300010],ans=1;
bool vis[300010];
void dfs(int U){
tag.clear();
for(int i=0;i<ice[U].size();++i){
if(col[ice[U][i]]){
tag[col[ice[U][i]]]=1;
}
}
int k=1;
for(int i=0;i<ice[U].size();++i){
if(!col[ice[U][i]]){
while(tag[k]){
++k;
}
col[ice[U][i]]=k;
tag[k]=1;
ans=max(ans,k);
}
}
vis[U]=1;
for(int i=first[U];i;i=next[i]){
if(!vis[v[i]]){
dfs(v[i]);
}
}
}
int main(){
// freopen("c.in","r",stdin);
int x,y;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&x);
for(int j=1;j<=x;++j){
scanf("%d",&y);
ice[i].push_back(y);
}
}
for(int i=1;i<n;++i){
scanf("%d%d",&x,&y);
AddEdge(x,y);
AddEdge(y,x);
}
dfs(1);
printf("%d\n",ans);
for(int i=1;i<m;++i){
printf("%d ",col[i]==0 ? 1 : col[i]);
}
printf("%d\n",col[m]==0 ? 1 : col[m]);
return 0;
}