重拾算法(4)——图的广度优先和深度优先搜索算法的实现与33867个测试用例

重拾算法(4)——图的广度优先和深度优先搜索算法的实现与33867个测试用例

本篇继续上一篇的方式,给出图的深度优先和广度优先搜索算法,然后用33867个测试用例进行自动化测试,以证明算法的正确性。

用邻接表(adjacency list)表示图(graph)

 1     public partial class AdjacencyListGraph<TVertex, TEdge> : ICloneable
 2     {        
 3         public AdjacencyListGraph()
 4         {
 5             this.Vertexes = new List<AdjacencyListVertex<TVertex, TEdge>>();
 6         }
 7         
 8         public IList<AdjacencyListVertex<TVertex, TEdge>> Vertexes { get; protected set; }
 9         
10         /**/
11     }
12     
13     public class AdjacencyListVertex<TVertex, TEdge>
14     {
15         public TVertex Value { get;set; }
16         public IList<AdjacencyListEdge<TVertex, TEdge>> Edges { get;set; }
17         
18         public AdjacencyListVertex()
19         {
20             this.Edges = new List<AdjacencyListEdge<TVertex, TEdge>>();
21         }
22     }
23     
24     public class AdjacencyListEdge<TVertex, TEdge>
25     {
26         public TEdge Value { get;set; }
27         public AdjacencyListVertex<TVertex, TEdge> Vertex1 { get;set; }
28         public AdjacencyListVertex<TVertex, TEdge> Vertex2 { get;set; }
29         
30         public AdjacencyListEdge(AdjacencyListVertex<TVertex, TEdge> vertex1, AdjacencyListVertex<TVertex, TEdge> vertex2)
31         {
32             this.Vertex1 = vertex1; 
33             this.Vertex2 = vertex2;
34         }
35     }

 

图的广度优先算法

图的广度优先算法和树的层次遍历是类似的。

 1         SearchReport<TVertex, TEdge> BreadthFirstTraverse(GraphNodeWorker<TVertex, TEdge> worker, bool reportNeeded)
 2         {
 3             SearchReport<TVertex, TEdge> result = null;
 4             if (reportNeeded) { result = new SearchReport<TVertex, TEdge>(); }
 5             var visited = new Dictionary<AdjacencyListVertex<TVertex, TEdge>, bool>();
 6             foreach (var vertex in this.Vertexes)
 7             {
 8                 if ((!visited.ContainsKey(vertex)) || (!visited[vertex]))
 9                 { 
10                     BFS(vertex, visited, worker); 
11                     if (reportNeeded) { result.ConnectedComponents.Add(vertex); }
12                 }
13             }
14             return result;
15         }
16         
17         void BFS(AdjacencyListVertex<TVertex, TEdge> headNode, Dictionary<AdjacencyListVertex<TVertex, TEdge>, bool> visited, GraphNodeWorker<TVertex, TEdge> worker)
18         {
19             var queue = new Queue<AdjacencyListVertex<TVertex, TEdge>>();
20             queue.Enqueue(headNode);
21             while (queue.Count > 0)
22             {
23                 var vertex = queue.Dequeue();
24                 if ((!visited.ContainsKey(vertex)) || (!visited[vertex]))
25                 {
26                     if (vertex != null)
27                     {
28                         worker.DoActionOnNode(vertex);
29                         if (!visited.ContainsKey(vertex))
30                         { visited.Add(vertex, true); }
31                         else
32                         { visited[vertex] = true; }
33                         var neighbourVertexes = from edge in vertex.Edges
34                                                 select GetNeighbourVertex(vertex, edge);
35                         foreach (var v in neighbourVertexes)
36                         {
37                             if ((!visited.ContainsKey(v)) || (!visited[v]))
38                             { queue.Enqueue(v); }
39                         }
40                     }
41                 }
42             }
43         }

 

其中的SearchReport<TVertex, TEdge>是一个统计搜索结果的对象,定义如下

1     public class SearchReport<TVertex, TEdge>
2     {
3         public List<AdjacencyListVertex<TVertex, TEdge>> ConnectedComponents { get;set; }
4         public SearchReport()
5         {
6             ConnectedComponents = new List<AdjacencyListVertex<TVertex, TEdge>>();
7         }
8     }

ConnectedComponents有多少个元素,就表示这个图有多少个连通分量

 

图的深度优先搜索算法

图的深度优先搜索可以用"递归"、"栈"和"优化的栈"三种形式实现。

 1         SearchReport<TVertex, TEdge> DepthFirstTraverse(GraphNodeWorker<TVertex, TEdge> worker, bool reportNeeded, DepthFirstTraverseOption option)
 2         {
 3             SearchReport<TVertex, TEdge> result = null;
 4             if (reportNeeded) { result = new SearchReport<TVertex, TEdge>(); }
 5             var visited = new Dictionary<AdjacencyListVertex<TVertex, TEdge>, bool>();
 6             foreach (var vertex in this.Vertexes)
 7             {
 8                 if ((!visited.ContainsKey(vertex)) || (!visited[vertex]))
 9                 {
10                     switch (option)
11                     {
12                     case DepthFirstTraverseOption.DFSRecursively:
13                         DFS(vertex, visited, worker);
14                         break;
15                     case DepthFirstTraverseOption.DFSByStack:
16                         DFSByStack(vertex, visited, worker);
17                         break;
18                     case DepthFirstTraverseOption.DFSByStackOptimized:
19                         DFSByStackOptimized(vertex, visited, worker);
20                         break;
21                     default:
22                         throw new NotImplementedException();
23                     }
24                     if (reportNeeded) { result.ConnectedComponents.Add(vertex);}
25                 }
26             }
27             return result;
28         }

 

用递归实现深度优先搜索

 1         void DFS(AdjacencyListVertex<TVertex, TEdge> vertex, Dictionary<AdjacencyListVertex<TVertex, TEdge>, bool> visited, GraphNodeWorker<TVertex, TEdge> worker)
 2         {
 3             //if ((!visited.ContainsKey(vertex)) || (!visited[vertex]))
 4             {
 5                 worker.DoActionOnNode(vertex);
 6                 if (!visited.ContainsKey(vertex))
 7                 { visited.Add(vertex, true); }
 8                 else
 9                 { visited[vertex] = true; }
10                 var neighbourVertexes = from edge in vertex.Edges
11                                         select GetNeighbourVertex(vertex, edge);
12                 foreach (var v in neighbourVertexes)
13                 {
14                     if ((!visited.ContainsKey(v)) || (!visited[v]))
15                     { DFS(v, visited, worker); }
16                 }
17             }
18         }

 

其中GetNeighbourVertex是个辅助函数,用于获取与指定结点相连的结点。

 1         AdjacencyListVertex<TVertex, TEdge> GetNeighbourVertex(AdjacencyListVertex<TVertex, TEdge> vertex, AdjacencyListEdge<TVertex, TEdge> edge)
 2         {
 3             if (vertex == null || edge == null) { return null; }
 4             Debug.Assert(!((vertex != edge.Vertex1) && (vertex != edge.Vertex2)));
 5             
 6             AdjacencyListVertex<TVertex, TEdge> result = null;
 7             if (vertex != edge.Vertex1) { result = edge.Vertex1; }
 8             else { result = edge.Vertex2; }
 9             
10             return result;
11         }

 

用栈实现深度优先搜索

 1         void DFSByStack(AdjacencyListVertex<TVertex, TEdge> root, Dictionary<AdjacencyListVertex<TVertex, TEdge>, bool> visited, GraphNodeWorker<TVertex, TEdge> worker)
 2         {
 3             var stack = new Stack<AdjacencyListVertex<TVertex, TEdge>>();
 4             stack.Push(root);
 5 
 6             while (stack.Count > 0)
 7             {
 8                 var vertex = stack.Pop();
 9                 if (vertex != null)
10                 {
11                     if ((!visited.ContainsKey(vertex)) || (!visited[vertex]))
12                     {
13                         worker.DoActionOnNode(vertex);
14                         if (!visited.ContainsKey(vertex))
15                         { visited.Add(vertex, true); }
16                         else
17                         { visited[vertex] = true; }
18                         
19                         var neighbourVertexes = from edge in vertex.Edges
20                                                 select GetNeighbourVertex(vertex, edge);
21                         foreach (var v in neighbourVertexes.Reverse())
22                         {
23                             if ((!visited.ContainsKey(v)) || (!visited[v]))
24                             {
25                                 stack.Push(v);
26                             }
27                         }
28                     }
29                 }
30             }
31         }

 

这个用栈实现的深度优先搜索算法,其特点是与上文用递归实现的算法相比,两者对图上结点的遍历顺序完全相同。因此我用这个两个算法对比以验证他们两个是否正确。

优化过的用栈实现深度优先搜索

这个用栈实现的深度优先搜索算法还有可优化的空间。优化后的算法如下。

 1         void DFSByStackOptimized(AdjacencyListVertex<TVertex, TEdge> root, Dictionary<AdjacencyListVertex<TVertex, TEdge>, bool> visited, GraphNodeWorker<TVertex, TEdge> worker)
 2         {
 3             var stack = new Stack<AdjacencyListVertex<TVertex, TEdge>>();
 4             stack.Push(root);
 5             if (!visited.ContainsKey(root)) { visited.Add(root, false); }
 6             else { visited[root] = false; }
 7 
 8             while (stack.Count > 0)
 9             {
10                 var vertex = stack.Pop();
11                 if (vertex != null)
12                 {
13                     worker.DoActionOnNode(vertex);
14                     visited[vertex] = true;
15                     var neighbourVertexes = from edge in vertex.Edges
16                                             select GetNeighbourVertex(vertex, edge);
17                     foreach (var v in neighbourVertexes)
18                     {
19                         if (!visited.ContainsKey(v))
20                         {
21                             stack.Push(v);
22                             visited.Add(v, false);
23                         }
24                     }
25                 }
26             }
27         }

 

这一版的算法,避免了不必要的入栈出栈,减少了对visited的判定次数,去掉了不必要的Reverse()。

要注意的是,优化后的算法,对图上结点的遍历顺序与优化前有所不同

 

测试

我的测试思路如下:

  • 编程自动生成具有1、2、3、4、5、6个结点的图的所有情形(一共有33867个。结点数目相同时,连线的不同意味着情形的不同)
  • 打印33867个图的情形。
  • 对33867个图,分别进行基于递归和栈的深度优先搜索,若搜索结果完全相同,就说明这两个算法是正确的。
  • 在上一步基础上,若基于优化的栈的深度优先搜索结果与上一步的搜索结果相比,只有访问顺序不同,就说明基于优化的栈的算法是正确的。
  • 在上一步基础上,若广度优先搜索结果与上一步的遍历结果相比,只有访问顺序不同,就说明广度优先搜索算法是正确的。

 

自动生成33867个不同的图

这个程序的实现思路与上一篇是一样的。在得到了所有具有N个结点的图后,给每个图增加一个结点,就成了N+1个结点的新图,一个这样的新图可以扩展出2^N个新的情形。而最初的具有1个结点的图就只有那么1个。利用数学归纳法,生成33867个不同的图的问题就解决了。

在控制台显示图结构

在控制台显示一个二叉树结构还算常见,但要显示图就复杂一点。我设计了按如下形式显示图结构。

 1 graph 9485:
 2 component 0:
 3 000
 4  ┕┑
 5 001 6  ┕┙
 7 
 8 component 1:
 9 002
10  ┝┑
11  ┕┿┑
12 003││
13  ┝┙│
14  ┕━┿┑
15 004  ││
16  ┝━┙│
17  ┕━━┙
18 
19 component 2:
20 005

 

受字体影响可能看不出效果,把上述内容复制到notepad里是这样的:

可见这个图是生成的第9485个图。图中的"001""002""003""004"是结点,黑线代表边。它有3个连通分量(component)。其中component0包含2个结点和1条边,component1包含3个结点和3条边,component2包含1个结点,不含边。

这样直观地看到图的结构,就容易进行排错调试了。

 

至于遍历、比较、判定是否正确的程序,就没有什么新意可言了。

总结

没有这样的测试,我是不敢相信我的算法实际可用的。虽然为了测试花掉好几天时间,不过还是很值得的。现在我可以放心大胆地说,我给出的图的广度优先和深度优先搜索算法是真正正确的!

需要工程源码的同学麻烦点个赞并留言你的Email~

本演示程序中,要求以邻接表作为的存储结构。中顶点数据类型为字符型,在提示信息下由用户输入。边的信息由用户输入弧头和弧尾元素。<br><br><br>为实现上述程序功能,以线性链表表示集合。为此,需要两个抽象数据类型:线性表和集合。<br>1. 线性表的抽象数据类型定义为:<br> ADT ALGraph{<br> 数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。<br> 数据关系R1:R={VR}<br>VR={<v,w>|v,w V且P(v,w),<v,w>表示从v到w的弧,为此P(v,w)定义了弧<v,w> 的意义或信息}<br> 基本操作P: <br>void CreateAdjList(ALGraph& G)<br> 操作结果:根据相应的提示信息构造一个。<br> int LocateVex(&G,char u)<br> 初始条件:G存在,u和G中顶点有相同特征。<br> 操作结果:若G中存在顶点u,则返回该顶点在中位置;否则返回-1。<br>int FirstAdjVex(ALGraph G,int v)<br> 初始条件:G存在,v是G中某个顶点。<br> 操作结果:返回v第一个邻接顶点。若v在G中没有邻接顶点,返回-1。<br>int NextAdjVex(ALGraph G,int v,int w)<br> 初始条件:G存在,v是G中某个顶点,w是v的邻接顶点。<br> 操作结果:返回v的(相对于w的)第一个邻接顶点。若不存在,返回-1。<br>void DFS(ALGraph &G,int v)<br> 初始条件:G存在。<br> 操作结果:从顶点v出发,对进行深度遍历。<br>void DFSTraverse(ALGraph *G)<br> 初始条件:G存在。<br> 操作结果:对进行深度遍历。<br>void BFSTraverse(ALGraph *G)<br> 初始条件:G存在。<br> 操作结果:对进行广度优先遍历。<br> }ADT ALGraph<br>2. 队列的抽象数据类型定义为:<br> ADT Queue{<br> 数据对象D:D={ | QNodeSet,i=1,2,…,n,n 0 }<br> 数据关系R2:R2={< , >| , D1, i=2,…,n}<br> 约定其中 端为队列头, 为队列尾<br> 基本操作P:<br> InitQueue (*Q)<br> 操作结果:构造一个空队列Q<br> EnQueue (*Q,e)<br> 初始条件:队列Q已存在<br> 操作结果:插入元素e为Q的新的队尾元素<br> DeQueue (*Q)<br> 初始条件:Q为非空队列<br> 操作结果:删除Q的队头元素,并返回其值<br> QueueEmpty (*Q)<br> 操作结果:队为空,则返回0;否则,返回1<br> }ADT Queue<br><br><br>的基本操作设置如下:<br>void CreateAdjList(ALGraph& G) //构建<br>int LocateVex(ALGraph &G,char u) //返回u在G中的位置<br>int FirstAdjVex(ALGraph G,int v) //返回v的第一个邻接节点<br>int NextAdjVex(ALGraph G,int v,int w) //返回v的相对w的下一个邻接节点<br>void DFS(ALGraph &G,int v) //从顶点v开始深度遍历<br>void DFSTraverse(ALGraph *G) //深度遍历<br>void BFSTraverse(ALGraph *G) //广度优先遍历<br><br>队列的基本操作设置如下:(具体操作上一次上机题中已经涉及,故此处不再详述)<br>void InitQueue(LinkQueue &Q) <br>void EnQueue(LinkQueue& Q,int e)<br>int DeQueue( LinkQueue& Q)<br>int QueueEmpty(Queue *Q)<br><br>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值