机器学习进阶-直方图与傅里叶变换-图像直方图 1.cv2.calc(生成图像的像素频数分布(直方图))...

1. cv2.calc([img], [0], mask, [256], [0, 256])  # 用于生成图像的频数直方图

参数说明: [img]表示输入的图片, [0]表示第几个通道, mask表示掩码,通常生成一部分白色,一部分黑色的掩码图, [256]表示直方图的个数, [0, 256]表示数字的范围

图像直方图表示的是颜色的像素值,在单个或者一个范围内出现的频数,一般图像会在某一个颜色区间内呈现较高的值

一只小猫,即其(0-255)的像素点的直方图分布情况,我们可以看出其在100-200之间的像素分布较密集

 

代码:

1. 灰度图的颜色通道

第一步:读取图片

第二步:使用cv2.calhist([img], [0], None, [256], [0, 256]) 获得每个像素点的频数值

第三步:使用plt.hist(img.ravel(), 256)做出直方图

import cv2
import numpy as np
import matplotlib.pyplot as plt


def cv_show(img, name):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

# 第一步读入图片
img = cv2.imread('cat.jpg', 0)

# 第二步:使用calchist计算每个像素点的频数
hist = cv2.calcHist([img], [0], None, [256], [1, 256])

# 第三步:进行画图操作
plt.subplot(131)
plt.imshow(img, cmap='gray')
plt.subplot(132)
plt.hist(img.ravel(), 256)
plt.subplot(133)
plt.plot(hist, color='red')
plt.show()

2.研究不同通道的颜色频度

# 研究不同颜色像素分布情况
img = cv2.imread('cat.jpg')

color = ['b', 'g', 'r']
for i, col in enumerate(color):
    histr = cv2.calcHist([img], [i], None, [256], [1, 256])
    plt.plot(histr, color=col, label=col)
    plt.legend()
plt.show()

 

3.使用掩码mask删选出部分图像,做像素频度分析

第一步:读入图片

第二步:使用np.zeros生成掩码mask

第三步:使用cv2.bitwise将掩码与图像结合截取中间位置的图片

第四步:使用cv2.calcHist生成统计像素点的频数图

第五步:进行绘图操作

# 第一步读入图片
img = cv2.imread('cat.jpg', 0)

# 第二步:生成掩码,中间部分为255,边缘部分都为0
mask = np.zeros(img.shape[:2], np.uint8)
mask[100:300, 100:400] = 255

# 第三步:使用cv2.bitwise与操作,只保留图像的中间部分
ret = cv2.bitwise_and(img, img, mask=mask) # 做与操作

# 第四步:使用cv2.calcHist带入掩码生成频数曲线
m_hist = cv2.calcHist([img], [0], mask, [256], [1, 256])

# 第五步:进行最终的绘图操作
plt.subplot(221)
plt.imshow(img, 'gray')
plt.subplot(222)
plt.imshow(mask, 'gray')
plt.subplot(223)
plt.imshow(ret, 'gray')
plt.subplot(224)
plt.plot(m_hist)
plt.plot(hist)
plt.show()

 

转载于:https://www.cnblogs.com/my-love-is-python/p/10405448.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值