机器学习实战_一个完整的程序(二)

自定义转换器

尽管 Scikit-Learn 提供了许多有用的转换器,你还是需要自己动手写转换器执行任务,比如自定义的清理操作,或属性组合。你需要让自制的转换器与 Scikit-Learn 组件(比如流水线)无缝衔接工作,因为 Scikit-Learn 是依赖鸭子类型的(而不是继承),你所需要做的是创建一个类并执行三个方法:fit()(返回self),transform(),和fit_transform()通过添加TransformerMixin作为基类,可以很容易地得到最后一个。另外,如果你添加BaseEstimator作为基类(且构造器中避免使用args和kargs),你就能得到两个额外的方法(get_params()和set_params()),二者可以方便地进行超参数自动微调*。例如,一个小转换器类添加了上面讨论的属性:

# 添加一个特征组合的装换器
from sklearn.base import BaseEstimator, TransformerMixin
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6

# 这里的示例没有定义fit_transform(),可能是因为fit()没有做任何动作(我猜的
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
    def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
        self.add_bedrooms_per_room = add_bedrooms_per_room
    def fit(self, X, y=None):
        return self  # nothing else to do
    def transform(self, X, y=None):
        rooms_per_household = X[:, rooms_ix] / X[:, household_ix]  # X[:,3]表示的是第4列所有数据
        population_per_household = X[:, population_ix] / X[:, household_ix]
        if self.add_bedrooms_per_room:
            bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
            return np.c_[X, rooms_per_household, population_per_household, # np.c_表示的是拼接数组。
                         bedrooms_per_room]
        else:
            return np.c_[X, rooms_per_household, population_per_household]

attr_adder = CombinedAttributesAdder(add_bedrooms_per_room=False)
housing_extra_attribs = attr_adder.transform(housing.values)    # 返回一个加入新特征的数据

在这个例子中,转换器有一个超参数add_bedrooms_per_room,默认设为True(提供一个合理的默认值很有帮助)。这个超参数可以让你方便地发现添加了这个属性是否对机器学习算法有帮助。更一般地,你可以为每个不能完全确保的数据准备步骤添加一个超参数。数据准备步骤越自动化,可以自动化的操作组合就越多,越容易发现更好用的组合(并能节省大量时间)。

另外sklearn是不能直接处理DataFrames的,那么我们需要自定义一个处理的方法将之转化为numpy类型

class DataFrameSelector(BaseEstimator,TransformerMixin):
    def __init__(self,attribute_names): #可以为列表
        self.attribute_names = attribute_names
    def fit(self,X,y=None):
        return self
    def transform(self,X):
        return X[self.attribute_names].values #返回的为numpy array

数据缩放

有两种常见的方法可以让所有的属性有相同的量度:线性函数归一化(Min-Max scaling)和标准化(standardization)。Scikit-Learn 提供了一个转换器MinMaxScaler来实现这个功能。它有一个超参数feature_range,可以让你改变范围,如果不希望范围是 0 到 1;Scikit-Learn 提供了一个转换器StandardScaler来进行标准化

min-max方式,对应的方法为

MinMaxScaler(self, feature_range=(0, 1), copy=True)

standardization 标准化数据,对应的方法为

StandardScaler(self, copy=True, with_mean=True, with_std=True)

转换流水线

目前在数据预处理阶段,我们需要对缺失值进行处理、特征组合和特征缩放。每一步的执行都有着先后顺序,存在许多数据转换步骤,需要按一定的顺序执行。sklearn提供了Pipeline帮助顺序完成转换幸运的是,Scikit-Learn 提供了类Pipeline,来进行这一系列的转换。下面是一个数值属性的小流水线:

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([
        ('imputer', Imputer(strategy="median")),    # 处理缺失值
        ('attribs_adder', CombinedAttributesAdder()),    # 特征组合
        ('std_scaler', StandardScaler()),    # 特征缩放
        ])

housing_num_tr = num_pipeline.fit_transform(housing_num)

Pipeline构造器需要一个定义步骤顺序的名字/估计器对的列表。除了最后一个估计器,其余都要是转换器(即,它们都要有fit_transform()方法)。名字可以随意起。

当你调用流水线的fit()方法,就会对所有转换器顺序调用fit_transform()方法,将每次调用的输出作为参数传递给下一个调用,一直到最后一个估计器,它只执行fit()方法。

估计器(Estimator):很多时候可以直接理解成分类器,主要包含两个函数:fit()和predict()
装换器(Transformer):转换器用于数据预处理和数据转换,主要是三个方法:fit(),transform()和fit_transform()

最后的估计器是一个StandardScaler,它是一个转换器,因此这个流水线有一个transform()方法,可以顺序对数据做所有转换(它还有一个fit_transform方法可以使用,就不必先调用fit()再进行transform())。

num_attribs = list(housing_num) # 返回的为列名[col1,col2,....]
cat_attribs = ["ocean_proximity"]

num_pipeline = Pipeline([ # 数值类型
        ('selector', DataFrameSelector(num_attribs)),
        ('imputer', Imputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std_scaler', StandardScaler()),
    ])

cat_pipeline = Pipeline([ # 标签类型
        ('selector', DataFrameSelector(cat_attribs)),
        ('cat_encoder', CategoricalEncoder(encoding="onehot-dense")),
    ])

上面定义的为分别处理数值类型和标签类型的转换流程,housing_num为DataFrame类型,list(DataFrame)的结果返回的为列名字。上面着两个流程还可以再整合一起。

from sklearn.pipeline import FeatureUnion
full_pipeline = FeatureUnion(transformer_list=[
        ("num_pipeline", num_pipeline),
        ("cat_pipeline", cat_pipeline),
    ])
housing_prepared = full_pipeline.fit_transform(housing) # 最终的结果
>>> housing_prepared
array([[ 0.73225807, -0.67331551,  0.58426443, ...,  0.        ,
         0.        ,  0.        ],
       [-0.99102923,  1.63234656, -0.92655887, ...,  0.        ,
         0.        ,  0.        ],
       [...]
>>> housing_prepared.shape
(16513, 17)

每个子流水线都以一个选择转换器开始:通过选择对应的属性(数值或分类)、丢弃其它的,来转换数据,并将输出DataFrame转变成一个 NumPy 数组。Scikit-Learn 没有工具来处理 PandasDataFrame,因此我们需要写一个简单的自定义转换器来做这项工作:

from sklearn.base import BaseEstimator, TransformerMixin

class DataFrameSelector(BaseEstimator, TransformerMixin):
    def __init__(self, attribute_names):
        self.attribute_names = attribute_names
    def fit(self, X, y=None):
        return self
    def transform(self, X):
        return X[self.attribute_names].values

选择并训练模型

我们先来训练一个线性回归模型:

from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)    # 利用预处理好的数据进行训练模型

完毕!你现在就有了一个可用的线性回归模型。用一些训练集中的实例做下验证:

>>> some_data = housing.iloc[:5]    # 前五个作为预测数据
>>> some_labels = housing_labels.iloc[:5]
>>> some_data_prepared = full_pipeline.transform(some_data)
>>> print("Predictions:\t", lin_reg.predict(some_data_prepared))    # 预测结果
Predictions:     [ 303104.   44800.  308928.  294208.  368704.]
>>> print("Labels:\t\t", list(some_labels))
Labels:         [359400.0, 69700.0, 302100.0, 301300.0, 351900.0]    # 实际结果

行的通,尽管预测并不怎么准确(比如,第二个预测偏离了 50%!)。让我们使用 Scikit-Learn 的mean_squared_error函数,用全部训练集来计算下这个回归模型的 RMSE:

>>> from sklearn.metrics import mean_squared_error
>>> housing_predictions = lin_reg.predict(housing_prepared)
>>> lin_mse = mean_squared_error(housing_labels, housing_predictions)
>>> lin_rmse = np.sqrt(lin_mse)
>>> lin_rmse
68628.413493824875

OK,有总比没有强,但显然结果并不好,这是一个模型欠拟合训练数据的例子。当这种情况发生时,意味着特征没有提供足够多的信息来做出一个好的预测,或者模型并不强大,修复欠拟合的主要方法是选择一个更强大的模型,给训练算法提供更好的特征,或去掉模型上的限制,你可以尝试添加更多特征(比如,人口的对数值),但是首先让我们尝试一个更为复杂的模型,看看效果。训练一个决策树模型DecisionTreeRegressor。这是一个强大的模型,可以发现数据中复杂的非线性关系。

from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
>>> housing_predictions = tree_reg.predict(housing_prepared)
>>> tree_mse = mean_squared_error(housing_labels, housing_predictions)
>>> tree_rmse = np.sqrt(tree_mse)
>>> tree_rmse
0.0

等一下,发生了什么?没有误差?这个模型可能是绝对完美的吗?当然,更大可能性是这个模型严重过拟合数据。如何确定呢?如前所述,直到你准备运行一个具备足够信心的模型,都不要碰测试集,因此你需要使用训练集的部分数据来做训练,用一部分来做模型验证。

用交叉验证做更佳的评估

使用 Scikit-Learn 的交叉验证功能。下面的代码采用了 K 折交叉验证(K-fold cross-validation):它随机地将训练集分成十个不同的子集,成为“折”,然后训练评估决策树模型 10 次,每次选一个不用的折来做评估,用其它 9 个来做训练。结果是一个包含 10 个评分的数组:

from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg, housing_prepared, housing_labels,
                         scoring="neg_mean_squared_error", cv=10)
rmse_scores = np.sqrt(-scores)
警告:Scikit-Learn 交叉验证功能期望的是效用函数(越大越好)而不是损失函数(越低越好),因此得分函数实际上与 MSE 相反(即负值),这就是为什么前面的代码在计算平方根之前先计算-scores。

来看下结果

>>> def display_scores(scores):
...     print("Scores:", scores)
...     print("Mean:", scores.mean())
...     print("Standard deviation:", scores.std())
...
>>> display_scores(tree_rmse_scores)
Scores: [ 74678.4916885   64766.2398337   69632.86942005  69166.67693232
          71486.76507766  73321.65695983  71860.04741226  71086.32691692
          76934.2726093   69060.93319262]
Mean: 71199.4280043
Standard deviation: 3202.70522793

现在决策树就不像前面看起来那么好了。实际上,它看起来比线性回归模型还糟!注意到交叉验证不仅可以让你得到模型性能的评估,还能测量评估的准确性(即,它的标准差)。决策树的评分大约是 71200,通常波动有 ±3200。如果只有一个验证集,就得不到这些信息。但是交叉验证的代价是训练了模型多次,不可能总是这样。

让我们计算下线性回归模型的的相同分数,以做确保:

>>> lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,
...                              scoring="neg_mean_squared_error", cv=10)
...
>>> lin_rmse_scores = np.sqrt(-lin_scores)
>>> display_scores(lin_rmse_scores)
Scores: [ 70423.5893262   65804.84913139  66620.84314068  72510.11362141
          66414.74423281  71958.89083606  67624.90198297  67825.36117664
          72512.36533141  68028.11688067]
Mean: 68972.377566
Standard deviation: 2493.98819069

判断没错:决策树模型过拟合很严重,它的性能比线性回归模型还差

现在再尝试最后一个模型:RandomForestRegressor(随机森林),随机森林是通过用特征的随机子集训练许多决策树。在其它多个模型之上建立模型成为集成学习(Ensemble Learning),它是推进 ML 算法的一种好方法。我们会跳过大部分的代码,因为代码本质上和其它模型一样:

>>> from sklearn.ensemble import RandomForestRegressor
>>> forest_reg = RandomForestRegressor()
>>> forest_reg.fit(housing_prepared, housing_labels)
>>> [...]
>>> forest_rmse
22542.396440343684
>>> display_scores(forest_rmse_scores)
Scores: [ 53789.2879722   50256.19806622  52521.55342602  53237.44937943
          52428.82176158  55854.61222549  52158.02291609  50093.66125649
          53240.80406125  52761.50852822]
Mean: 52634.1919593
Standard deviation: 1576.20472269

现在好多了:随机森林看起来很有希望。但是,训练集的评分仍然比验证集的评分低很多。解决过拟合可以通过简化模型,给模型加限制(即,正则化),或用更多的训练数据。在深入随机森林之前,你应该尝试下机器学习算法的其它类型模型(不同核心的支持向量机,神经网络,等等),不要在调节超参数上花费太多时间。目标是列出一个可能模型的列表(两到五个)。

提示:你要保存每个试验过的模型,以便后续可以再用。要确保有超参数和训练参数,以及交叉验证评分,和实际的预测值。这可以让你比较不同类型模型的评分,还可以比较误差种类。你可以用 Python 的模块pickle,非常方便地保存 Scikit-Learn 模型,或使用sklearn.externals.joblib,后者序列化大 NumPy 数组更有效率:
from sklearn.externals import joblib

joblib.dump(my_model, "my_model.pkl")
# 然后
my_model_loaded = joblib.load("my_model.pkl")

模型微调

网格搜索:使用 Scikit-Learn 的GridSearchCV来做这项搜索工作。你所需要做的是告诉GridSearchCV要试验有哪些超参数,要试验什么值,GridSearchCV就能用交叉验证试验所有可能超参数值的组合。例如,下面的代码搜索了RandomForestRegressor超参数值的最佳组合(很费时间):

from sklearn.model_selection import GridSearchCV

param_grid = [
    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
  ]

forest_reg = RandomForestRegressor()

grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                           scoring='neg_mean_squared_error')

grid_search.fit(housing_prepared, housing_labels)
当你不能确定超参数该有什么值,一个简单的方法是尝试连续的 10 的幂(如果想要一个粒度更小的搜寻,可以用更小的数,就像在这个例子中对超参数n_estimators做的)。

param_grid告诉 Scikit-Learn 首先评估所有的列在第一个dict中的n_estimators和max_features的3 × 4 = 12种组合(不用担心这些超参数的含义,会在第 7 章中解释)。然后尝试第二个dict中超参数的2 × 3 = 6种组合,这次会将超参数bootstrap设为False而不是True(后者是该超参数的默认值)。完成后,你就能获得参数的最佳组合,如下所示:

>>> grid_search.best_params_
{'max_features': 6, 'n_estimators': 30}

你还能直接得到最佳的估计器:

>>> grid_search.best_estimator_
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features=6, max_leaf_nodes=None, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           n_estimators=30, n_jobs=1, oob_score=False, random_state=None,
           verbose=0, warm_start=False)

当然,也可以得到评估得分:

>>> cvres = grid_search.cv_results_
... for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
...     print(np.sqrt(-mean_score), params)
...
64912.0351358 {'max_features': 2, 'n_estimators': 3}
55535.2786524 {'max_features': 2, 'n_estimators': 10}
52940.2696165 {'max_features': 2, 'n_estimators': 30}
60384.0908354 {'max_features': 4, 'n_estimators': 3}
52709.9199934 {'max_features': 4, 'n_estimators': 10}
50503.5985321 {'max_features': 4, 'n_estimators': 30}
59058.1153485 {'max_features': 6, 'n_estimators': 3}
52172.0292957 {'max_features': 6, 'n_estimators': 10}
49958.9555932 {'max_features': 6, 'n_estimators': 30}
59122.260006 {'max_features': 8, 'n_estimators': 3}
52441.5896087 {'max_features': 8, 'n_estimators': 10}
50041.4899416 {'max_features': 8, 'n_estimators': 30}
62371.1221202 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
54572.2557534 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
59634.0533132 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
52456.0883904 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
58825.665239 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
52012.9945396 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}

在这个例子中,我们通过设定超参数max_features为 6,n_estimators为 30,得到了最佳方案。对这个组合,RMSE 的值是 49959,这比之前使用默认的超参数的值(52634)要稍微好一些。祝贺你,你成功地微调了最佳模型!

随机搜索:当探索相对较少的组合时,就像前面的例子,网格搜索还可以。但是当超参数的搜索空间很大时,最好使用RandomizedSearchCV。这个类的使用方法和类GridSearchCV很相似,但它不是尝试所有可能的组合,而是通过选择每个超参数的一个随机值的特定数量的随机组合。这个方法有两个优点:

  • 如果你让随机搜索运行,比如 1000 次,它会探索每个超参数的 1000 个不同的值(而不是像网格搜索那样,只搜索每个超参数的几个值)
  • 你可以方便地通过设定搜索次数,控制超参数搜索的计算量。

分析最佳模型和它们的误差

通过分析最佳模型,常常可以获得对问题更深的了解。比如,RandomForestRegressor可以指出每个属性对于做出准确预测的相对重要性

>>> feature_importances = grid_search.best_estimator_.feature_importances_
>>> feature_importances
array([  7.14156423e-02,   6.76139189e-02,   4.44260894e-02,
         1.66308583e-02,   1.66076861e-02,   1.82402545e-02,
         1.63458761e-02,   3.26497987e-01,   6.04365775e-02,
         1.13055290e-01,   7.79324766e-02,   1.12166442e-02,
         1.53344918e-01,   8.41308969e-05,   2.68483884e-03,
         3.46681181e-03])

将重要性分数和属性名放到一起:

>>> extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]
>>> cat_one_hot_attribs = list(encoder.classes_)
>>> attributes = num_attribs + extra_attribs + cat_one_hot_attribs
>>> sorted(zip(feature_importances,attributes), reverse=True)
[(0.32649798665134971, 'median_income'),
 (0.15334491760305854, 'INLAND'),
 (0.11305529021187399, 'pop_per_hhold'),
 (0.07793247662544775, 'bedrooms_per_room'),
 (0.071415642259275158, 'longitude'),
 (0.067613918945568688, 'latitude'),
 (0.060436577499703222, 'rooms_per_hhold'),
 (0.04442608939578685, 'housing_median_age'),
 (0.018240254462909437, 'population'),
 (0.01663085833886218, 'total_rooms'),
 (0.016607686091288865, 'total_bedrooms'),
 (0.016345876147580776, 'households'),
 (0.011216644219017424, '<1H OCEAN'),
 (0.0034668118081117387, 'NEAR OCEAN'),
 (0.0026848388432755429, 'NEAR BAY'),
 (8.4130896890070617e-05, 'ISLAND')]

有了这个信息,你就可以丢弃一些不那么重要的特征(比如,显然只要一个分类ocean_proximity就够了,所以可以丢弃掉其它的)。你还应该看一下系统犯的误差,搞清为什么会有些误差,以及如何改正问题(添加更多的特征,或相反,去掉没有什么信息的特征,清洗异常值等等)。

用测试集评估系统

调节完系统之后,你终于有了一个性能足够好的系统。现在就可以用测试集评估最后的模型了。这个过程没有什么特殊的:从测试集得到预测值和标签,运行full_pipeline转换数据(调用transform(),而不是fit_transform()!),再用测试集评估最终模型:

final_model = grid_search.best_estimator_

X_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

X_test_prepared = full_pipeline.transform(X_test)

final_predictions = final_model.predict(X_test_prepared)

final_mse = mean_squared_error(y_test, final_predictions)
final_rmse = np.sqrt(final_mse)   # => evaluates to 48,209.6

评估结果通常要比交叉验证的效果差一点,如果你之前做过很多超参数微调(因为你的系统在验证集上微调,得到了不错的性能,通常不会在未知的数据集上有同样好的效果)。这个例子不属于这种情况,但是当发生这种情况时,你一定要忍住不要调节超参数,使测试集的效果变好;这样的提升不能推广到新数据上。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值