得出“15选5”的各种组合(组合生成算法)

  今天有个网友问我组合数生成算法的问题,这个写的早,给他回复了原理。刚好这段时间玩“155”,知道那个是随机的,概率问题(中就是中了,没中就是没中),没啥好分析的,可还是忍不住想计算下……

  好,不废话了,下面开工。 

一、原理 

借助二进制计数的机制来进行比如字符串“123”中选出两个字符,如下计算:

1:二进制串为 0001

2: 0010

3: 0011 

4: 0100 

5: 0101 

6: 0110 

7: 0111 

8: 1000 

其中含有两个1的有 

3: 0011 

5: 0101 

6: 0110 

所以一共3个 

如果是1显示当前位置数据,不是1不显示,用字符串“123”匹配后结果为: 

 23 

1 3 

12 

即: 

23 

13 

12 

方法很土,不过可以实现功能,够一般用 

二、示例代码 

下面是C++的示例代码: 

View Code
 1 /*
2 File : combination.cpp
3 Author : Mike
4 E-Mail : Mike_Zhang@live.com
5 */
6 #include <cstdio>
7 #include <cstdlib>
8 #include <iostream>
9 #include <string>
10 #include <vector>
11
12 using namespace std;
13
14 //计算数据中二进制数据中1的个数
15 int count(unsigned int v)
16 {
17 int ret = 0;
18 while(v>0)
19 {
20 v &= (v-1);
21 ++ret;
22 }
23 return ret;
24 }
25
26 //检测pos位置的二进制数据是否是1
27 bool check(unsigned int v,int pos)
28 {
29 unsigned int tmp=0x01;
30 int sz = sizeof(v)*8;
31 if(pos > sz)
32 {
33 printf("pos > sz\r\n");
34 return -1;
35 }
36 tmp <<= pos;
37 return (v & tmp);
38 }
39
40 int main()
41 {
42 int i=0,j=0;
43 vector<string> vstr;
44 int szvstr = 0;
45 string str="";
46 int num = 0;
47 cout<<"Input size of vector : ";
48 cin>>szvstr;
49
50 for(i=0;i<szvstr;++i)
51 {
52 cout<<"Input string : ";
53 cin>>str;
54 vstr.push_back(str);
55 }
56 //简单检查数据
57 while(num > szvstr or num ==0 )
58 {
59 cout<<"Input number : ";
60 cin>>num;
61 }
62
63 unsigned int counter = 1;
64 counter <<= szvstr;
65 int szUnsign = sizeof(unsigned int) * 8;
66
67 int total = 0;
68 //输出组合结果
69 for(i=0;i<counter;++i)
70 {
71 if(num == count(i))
72 {
73 for(j=0;j<szUnsign && j < szvstr;++j)
74 {
75 if(check(i,j))
76 cout<<vstr[j] << " ";
77 }
78 cout<<endl;
79 ++total;
80 }
81 }
82 cout <<"total = "<<total<<endl;
83 }

三、运行效果 

1、输入数据: 

首先输入集合的大小,比如15 

接下来输入每个元素,比如010203。。。15 

最后输入要选的组合,比如“155”的话就输入5 

具体如下: 

2、执行结果: 

这里会输出各种组合(“155”的各种组合),并输出各种组合的总个数,具体如下: 

 

其他:

python实现代码:

import itertools

tmpL=[]
for i in range(1,16):
    tmpL.append("%02d" % i)

cmbResult = list(itertools.combinations(tmpL,5))
for data in cmbResult :
    print data
print len(cmbResult)

  好,就这些了,希望对你有帮助。

第一章 引论 1.1 组合数学研究的对象 1.2 组合问题典型实例 1.2.1 分派问题 1. 2.2 染色问题 1.2.3 幻方问题 1.2.4 36军官问题 1.2.5 中国邮路问题 习 题 第二章 排列与组合 2.1 两个基本计数原理 2.2 无重集的排列与组合 2.3 重集的排列与组合 2.4 排列生成算法 2.4.1 序数法 2.4.2 字典序法 2.4.3 轮转法 2.5 组合生成算法 .2.6 应用举例 习 题 第三章 容斥原理 3.1 引 言 3.2 容斥原理 3.3 几个重要公式 3.4 错位排列 3.5 有限制的排列 3.6 棋阵多项式 3.7 禁位排列 习 题 第四章 鸽巢原理 4.1 鸽巢原理 4. 2 鸽巢原理的推广形式 4. 3 ramsey数 4.4 ramsey数的性质 4.5 ramsey定理 习 题 第五章 母函数 5.1 母函数概念 5.2 幂级数型母函数 5.3 整数的拆分 5.4 ferrers图 5.5 指数型母函数 习 题 第六章 递归关系 6.1 引言 6.2 几个典型的递归关系.. 6.3 用母函数方法求解递归关系 6.4 常系数线性齐次递归关系的求解 6.5 常系数线性非齐次递归关系的求解 6.6 非常系数非线性递归关系的求解 6.7 差分表法 6.8 stirling数 习 题 第七章 polya定理 7.1 有限集的映射 7.2 群的基本概念 7.3 置换群 7.4 置换的奇偶性 7.5 置换群下的共轭类 7.6 burnside引理 7.7 polya定理 7.8 polya定理的母函数型式 7.9 不标号图的计数 习 题 第八章 图论基础 8.1 图的基本概念 8.2 同构图、完全图与二分图 8.3 通路、回路与图的连通性 8.4 euler图与hamilton图 8.5 割集与树 8.6 图的矩阵表示法 8.7 平面图、对偶图与色数 8.8 匹配理论 8.9 网络流 习 题 第九章 拉丁方与区组设计 9.1 引言 9.2 拉丁方 9.3 有限域 9.4 正交拉丁方的构造 9.5 完全区组设计 9.6 平衡不完全区组设计(bibd) 9.7 区组设计的构造 9.8 steiner三连系 9.9 hadamard矩阵 习 题 第十章 线性规划 10.1 lp问题引例 10.2 lp问题的一般形式 10.3 lp问题的标准型 10.4 可行域和最优可行解 10.5 单纯形法 10.6 单纯形表格法 10.7 两阶段法 10.8 对偶原理 10.9 对偶单纯形法 10.10 应用举例 习 题 第十一章 组合优化算法与计算的时间复杂度理论 11.1 dijkstra算法 11.2 floyd算法 11.3 kruskal算法 11.4 求最优树的破圈法和统观法 11.5 二分图中最大匹配与最佳匹配的算法 11.6 fleury算法 11.7 中国邮路问题及其算法 11.8 深度优先搜索法--dfs算法 11.9 项目网络与关键路径法 11.10 网络最大流算法 11.11 状态转移法 11.12 好算法、坏算法和np类问题 11.13 npc类问题 11.14 货郎问题的近似解 习 题... 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值