z=sin(xy)

本文深入探讨了黎曼猜想及其在数学领域的应用,特别是通过函数图形表示来理解复杂概念。同时,指导读者如何使用Python等免费工具和编程语言绘制函数图像,提供具体的代码示例,包括正弦函数图像和y=1/ln(x)图像。文章还提及了因子分解与素数定理的图像表示,并强调了业余爱好者在有限资源下实现数学探索的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看了《千年难题》,第一章是黎曼猜想。里面有两个我很感兴趣的问题:一是关于函数的图形表示方式,比如z=sin(xy)的图像,二是大数的因子分解方式。

专业的数学软件应该能够很容易的生成各种函数图像,但是我要探求的是作为业余人士利用免费工具和简单的编程语言来描绘函数图形。scipy里面的工具可以做这部分工作。

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

NUM = 300
x=np.linspace(0, 3, NUM)
y=np.linspace(0, 3, NUM)

x, y = np.meshgrid(x, y)
z=np.sin(x*y)

fig=plt.figure()
ax=fig.gca(projection='3d')
ax.plot_surface(x, y, z, cmap=cm.coolwarm, linewidth=0)
plt.show()

z=sin(xy)

 

关于因子分解,书中提到数学家用一些高深精妙的方法寻找素因子,他们的方法巧妙而有效,但是仍然期待黎曼猜想的证明能够使因子分解方法有一个巨大的突破。

下图是 y=1/ln(x)的图像,是素数定理的图像。

import matplotlib.pyplot as plt
import numpy as np

NUM = 100
x=np.linspace(1.1, 3, NUM)
y=1/np.log(x)

plt.plot(x, y)
plt.show()
1~lnN

转载于:https://www.cnblogs.com/openqt/p/4104672.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值