Django extra 和 annotate

>>> qs=Question.objects.extra(select={'anum': 'SELECT COUNT(*) FROM questions_answer WHERE questions_answer.question_id = questions_question.id'},).extra(order_by=['-anum'])
>>> [q.anum for q in qs]
[3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0]
>>> qs2=Question.objects.annotate(n=Count('answer')).order_by('-n')
>>> [q.n for q in qs2]
[3, 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0, 0]
>>>

 

转载于:https://www.cnblogs.com/xiangnan/p/3581488.html

Django ORM中,`annotate()`和`aggregate()`都是用于对查询结果进行聚合操作的函数,但它们的作用和使用方式略有不同。 `annotate()`函数用于在每一行结果上进行聚合操作,生成一个新的字段,并将聚合结果添加到每一行中。通常,你会在`annotate()`中使用聚合函数(如`Count`、`Sum`、`Avg`等)来计算某个字段的聚合值。 以下是一个示例,展示了如何使用`annotate()`函数计算每个类别的商品数量: ```python from django.db.models import Count from myapp.models import Product result = Product.objects.values('category').annotate(count=Count('id')) ``` 在上面的示例中,我们假设有一个名为`category`的字段表示商品类别,以及一个自动生成的`id`字段表示商品的唯一标识。通过`.values('category')`指定按照`category`字段进行分组,并使用`.annotate(count=Count('id'))`计算每个类别中商品的数量,并将结果保存在新的字段`count`中。 相反,`aggregate()`函数用于对整个查询结果进行聚合操作,生成一个包含聚合结果的字典。通常,你会在`aggregate()`中使用聚合函数来计算整个查询结果的某个聚合值。 以下是一个示例,展示了如何使用`aggregate()`函数计算所有商品的总价格: ```python from django.db.models import Sum from myapp.models import Product result = Product.objects.aggregate(total_price=Sum('price')) ``` 在上面的示例中,我们假设有一个名为`price`的字段表示商品价格。使用`.aggregate(total_price=Sum('price'))`计算所有商品的总价格,并将结果保存在字典中,键为`total_price`。 总结一下,`annotate()`用于对每一行进行聚合操作并生成新的字段,而`aggregate()`用于对整个查询结果进行聚合操作并生成一个字典。 希望这可以帮助你理解`annotate()`和`aggregate()`函数在Django ORM中的区别和作用。如果有任何进一步的问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值