设计模式-工厂模式

xl_echo编辑整理,欢迎转载,转载请声明文章来源。欢迎添加echo微信(微信号:t2421499075)进行交流学习。
百战不败,依不自称常胜,百败不颓,依能奋力前行。——这才是真正的堪称强大!!

---

### 工厂模式
工厂模式分为三种类型:简单工厂,工厂方法,抽象工厂;是我们最常使用的实例化对象模型,是工厂方法代替new操作的一种模式。在spring原码中亦有用到,如BeanFactory。三种模式当中简单工厂又叫做静态工厂方法(StaticFactory Method)模式,但不属于 23 种设计模式之一。

 

准备一份几种工厂模式通用的实体,以便后面每一次都使用,更能够展现每一种工厂模式的区别
```java
public interface Phone {}
public class HuaWei implements Phone {}
public class IPhone implements Phone {}
public class XiaoMi implements Phone {}
```

* 简单工厂
简单工厂模式的实质是由一个工厂类根据传入的参数,动态决定应该创建哪一个产品类。它的优点就是能够根据一个批量生产对象,对于用于操作更简单,避免了用户直接去进行new的动作,同时它也是其它两种模式的思想模型。相对而言,简单工厂模式,传入参数也是一个缺点,不能够直接去选择生产什么对象。
代码演示
```java
//简单工厂
public class SimpleFactory {
public static Phone test(String name) {
if ("XiaoMi".equals(name)) {
return new XiaoMi();
} else if ("IPhone".equals(name)) {
return new IPhone();
} else if ("HuaWei".equals(name)) {
return new HuaWei();
} else {
System.out.println("未识别的类型");
return null;
}
}
}
//对工厂进行测试
public class TestSimpleFactory {
public static void main(String[] args){
System.out.println(SimpleFactory.test("XiaoMi"));
}
}
```

* 工厂方法
采用工厂模式,对象的创建及初始化职责交给工厂对象。每一个实体必须要对应一个工厂,这样能够有效的分离对象的创建和使用。和简单工厂来相比,进一步的面向用户对创建实现过程进行了隐藏。但是每一个实体要去对应一个工厂,这样的做法会使实体增多的时候,对应的工厂也需要不断增加。
```java
//工厂方法接口
public interface MethodFactory {
Phone getPhone();
}
//工厂方法的实现
public class HuaWeiFactory implements MethodFactory {
@Override
public Phone getPhone() {
return new HuaWei();
}
}
public class IPhoneFactory implements MethodFactory {
@Override
public Phone getPhone() {
return new IPhone();
}
}
public class XiaoMiFactory implements MethodFactory {
@Override
public Phone getPhone() {
return new XiaoMi();
}
}
//测试工厂方法
public class TestMethodFactory {
public static void main(String[] args) {
MethodFactory methodFactory = new HuaWeiFactory();
System.out.println(methodFactory.getPhone());
methodFactory = new IPhoneFactory();
System.out.println(methodFactory.getPhone());
methodFactory = new XiaoMiFactory();
System.out.println(methodFactory.getPhone());
}
}
```

* 抽象工厂
抽象工厂模式(Abstract FactoryPattern)是围绕一个超级工厂创建其他工厂。该超级工厂又称为其他工厂的工厂。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。
```java
//抽象工厂
public abstract class AbstractFactory {
public abstract Phone getIPhone();
public abstract Phone getHuaWei();
public abstract Phone getXiaoMi();
}
//抽象工厂实现
public class PhoneFactory extends AbstractFactory{
@Override
public Phone getIPhone() {
return new IPhone();
}
@Override
public Phone getHuaWei() {
return new HuaWei();
}
@Override
public Phone getXiaoMi() {
return new XiaoMi();
}
}
//测试抽象工厂
public class TestAbstractFactory {
public static void main(String[] args) {
PhoneFactory phoneFactory = new PhoneFactory();
System.out.println(phoneFactory.getHuaWei());
}
}
```

代码地址:https://git.coding.net/xlsorry/Demo.git

转载于:https://www.cnblogs.com/xlecho/p/11124348.html

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值