Easy-Dataset实现文档生成数据集

部署运行你感兴趣的模型镜像

一、概述

Easy Dataset是一个专门为大型语言模型(LLM)创建微调数据集而设计的应用程序。它提供了一个直观的界面,用于上传特定领域的文件、智能分割内容、生成问题以及为模型微调生成高质量的训练数据。


使用Easy Dataset,您可以将领域知识转换为结构化数据集,与遵循OpenAI格式的所有LLM API兼容,使微调过程简单高效。

二、项目安装

项目的安装比较方便,有3种方式:

1.客户端安装

比较简单,直接下载客户端,安装后即可使用。

2.源码安装

可以修改源代码,功能调整,自主性较好。

 

源代码下载

git clone https://github.com/ConardLi/easy-dataset.git

cd easy-dataset

 

安装依赖项

npm install

启动开发服务器

npm run build

npm run start

 

3.Docker容器安装

克隆代码库

git clone https://github.com/ConardLi/easy-dataset.git
cd easy-dataset

 

构建 Docker 映像

docker build -t easy-dataset .

 

运行容器

docker run -d -p 1717:1717 -v {YOUR_LOCAL_DB_PATH}:/app/local-db --name easy-dataset easy-dataset

注意:需要修改YOUR_LOCAL_DB_PATH为你自己的数据存储路径。

打开浏览器并导航至http://localhost:1717

 

本文使用第一种方式,下载windows客户端

https://github.com/ConardLi/easy-dataset/releases/tag/1.3.7

下载完成后,双击exe程序,下一步,下一步安装即可,很简单。

安装完成后,效果如下:

三、项目使用

准备原始文件

下载《网络安全法规摘编手册》pdf文件,这个是由兰州大学编写的。兰州大学是中国教育部直属的全国重点综合性大学,位列国家“双一流”、“985工程”和“211工程”,属于中国高校第一梯队的中上水平。

链接如下:

https://jchyxy.lzu.edu.cn/jcyxy/upload/files/N20211112170341.pdf

创建新项目

创建项目“网络安全法规”,本文以生成法律法规的领域数据为例。如图所示。

项目名称:网络安全法规

项目描述:构建网络安全法规的微调数据集

模型配置

由于pdf文件比较大,有5M左右,可能会耗费很多tokens,使用收费的,不划算,所以打算本地启动大模型。

使用LM Studio软件,启动一个deepseek-r1-distill-llama-8b模型

注意:模型最好选择deepseek-r1,v1,v3都行。

我测试用qwen3扫描pdf文件,批量生成问题,有异常。

 

项目创建完成后,进行模型配置,这一步可以根据各自情况配置,配置也非常简单,选择“项目设置” -> “模型配置”,如下图

确保能刷新出模型,然后选择即可。

 

 拆分文本

选择“文献处理”,右边要选择AI模型,否则无法上传

 

上传准备好的行业数据MD文件,选择基础PDF解析

 点击上传并处理

 

可以全部选择拆分后的文本,然后批量生成问题,如下图。

 这里生成问题需要等待一段时间:

 打开LM Studio,这里可以看到大模型运行过程

 查看GPU使用率,最高在90%左右

大概10分钟左右,就可以完成。

问题管理

 选择“问题管理”,勾选生成的问题,选择“批量构造数据集”,过程仍需等待一段时间。

继续等待

 这个过程比较漫长,也是比较耗费GPU的,90%左右的使用率。大概持续45分钟左右。

 

构建数据集

选择“导出数据集”,下载构建好的网络安全行业数据。

 

导出数据集,这里都是默认的。

设置系统提示词“你是一位法律专家,擅长网络安全法”。

 

导出之后,会得到一个文件datasets-kwWD-GPA3SKm-alpaca-2025-06-13.json

查看文件大小,257kb,有点小,1MB都没有。

哎,没办法,只生成了108个问题,如果有更多的问题,文件就比较大了。

 

我们打开文件,可以看到导出的数据集案例。

 

至此,我们已利用 Easy Dataset 工具完成了“网络安全领域数据集” 的处理与生成。

虽然演示过程相对基础,但其过程充分展现了该工具的高度实用性:仅需执行三项核心操作,即可生成适用于微调的数据集。

 

数据集工厂

点击搜索公开数据集

 打开一个数据集

 可以看到,这个数据集很庞大,115.9GB

 文章到此结束,总体来说,你可以将pdf文件,或者其他文本文件,比如world,txt,md,生成数据集。

也可以下载公开的数据集,来完成你的AI模型微调。

 

本文参考链接:https://blog.csdn.net/weixin_46880696/article/details/147784014

 

原创作者: xiao987334176 转载于: https://www.cnblogs.com/xiao987334176/p/18927305

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
在科技快速演进的时代背景下,移动终端性能持续提升,用户对移动应用的功能需求日益增长。增强现实、虚拟现实、机器人导航、自动驾驶辅助、手势识别、物体检测与距离测量等前沿技术正成为研究与应用的热点。作为支撑这些技术的核心,双目视觉系统通过模仿人类双眼的成像机制,同步获取两路图像数据,并借助图像处理与立体匹配算法提取场景深度信息,进而生成点云并实现三维重建。这一技术体系对提高移动终端的智能化程度及优化人机交互体验具有关键作用。 双目视觉系统需对同步采集的两路视频流进行严格的时间同步与空间校正,确保图像在时空维度上精确对齐,这是后续深度计算与立体匹配的基础。立体匹配旨在建立两幅图像中对应特征点的关联,通常依赖复杂且高效的计算算法以满足实时处理的要求。点云生成则是将匹配后的特征点转换为三维空间坐标集合,以表征物体的立体结构;其质量直接取决于图像处理效率与匹配算法的精度。三维重建基于点云数据,运用计算机图形学方法构建物体或场景的三维模型,该技术在增强现实与虚拟现实等领域尤为重要,能够为用户创造高度沉浸的交互环境。 双目视觉技术已广泛应用于多个领域:在增强现实与虚拟现实中,它可提升场景的真实感与沉浸感;在机器人导航与自动驾驶辅助系统中,能实时感知环境并完成距离测量,为路径规划与决策提供依据;在手势识别与物体检测方面,可精准捕捉用户动作与物体位置,推动人机交互设计与智能识别系统的发展。此外,结合深度计算与点云技术,双目系统在精确距离测量方面展现出显著潜力,能为多样化的应用场景提供可靠数据支持。 综上所述,双目视觉技术在图像处理、深度计算、立体匹配、点云生成及三维重建等环节均扮演着不可或缺的角色。其应用跨越多个科技前沿领域,不仅推动了移动设备智能化的发展,也为丰富交互体验提供了坚实的技术基础。随着相关算法的持续优化与硬件性能的不断提升,未来双目视觉技术有望在各类智能系统中实现更广泛、更深层次的应用。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
本软件提供多种基于张量理论的流动诱导纤维取向计算功能,涵盖Jeffrey模型、Folgar-Tucker模型及各向异性旋转扩散系列(如Phelps-Tucker五参数模型、iARD、pARD、MRD与Wang双参数模型)以及慢速动力学方法(包括SRF、RSC与RPR)。针对四阶方向张量,支持三维空间中的线性、二次、混合、正交各向异性、自然及IBOF闭合近似;在平面取向分析中,则提供Bingham分布、自然近似、椭圆半径法、正交各向异性D型与非正交F型等多种闭合方案。 软件可计算平面或三维条件下的完整方向分布函数,适用于瞬态或稳态过程,并整合了Jeffery、Folgar-Tucker与ARD等基础取向动力学模型。同时支持基于Phelps-Tucker理论的纤维长度分布演化模拟。 在线弹性刚度预测方面,集成了平均场模型体系,包括Halpin-Tsai公式、稀释Eshelby解、Mori-Tanaka方法及Lielens双夹杂模型,适用于单向或分布型纤维取向情况。所有刚度模型均可导出对应的热应力张量与热膨胀张量。 此外,软件具备经典层压板理论分析能力,可处理随厚度变化的纤维取向对复合材料板刚度的影响。在分布函数重构方面,提供Jeffery解析解、Bingham分布、椭圆半径法及四阶最大熵函数等多种方法用于平面取向分布的重建。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值