《LDA漫游指南》——第2章 前置知识

本节书摘来异步社区《LDA漫游指南》一书中的第2章,作者: 马晨,更多章节内容可以访问云栖社区“异步社区”公众号查看

第2章 前置知识

LDA漫游指南
本章所描述的工具和线索在后期LDA算法的采样公式推导中会全部明了。关于为什么需要使用这些知识要素,这里面有很长的一段历史渊源,比如在概率论和数理统计中,gamma函数被广泛使用,而在最终的LDA采样公式中,你会发现,gamma函数被神奇地消失了。我们在后面的章节中可以看到,LDA算法的精妙之处在于用令人屏息的洞察力作为纽带,将零散的部件全部组合在一起。

2.1 gamma函数

所谓的gamma函数其实就是阶乘的函数形式,即n!=1⋅2⋅3…n。如果我问你3的阶乘是多少,你立即回答1⋅2⋅3=6,但是如果我问你0.5阶乘是什么,如果没有gamma函数就无法回答了。欧拉经过不懈努力,终于发现阶乘的更一般的函数形式gamma函数f(x)=Gamma (x),直接给出:

4b6c3b587b356be7843e15aaf68f3cf2a32f0a4b

也可以算出

f7da19bf5e513910f5429f2cba042686649d5472

利用二重积分换元法做极坐标变换,令t = rcos theta,u = rsin theta, 则当 t 和 u 的定义域D都为 - infty ~ + infty ,即积分区域为整个坐标轴, r 半径的范围为0~ + infty ,而 theta 的范围为绕坐标轴一圈从0~2π使用雅可比行列式:

99b5a2477e8724f13c56c3fd400cb3a2310b877b

则又因为 I 的被积函数大于0,则 I >0,最后得

d8e8ba0ff4661f8c2da262b0bdaa5f349b9c0eba

也正因为如此,

fed3c36f61e861180824f675d81fb6f09a9eb564
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值