[Noi2014] 魔法森林

传送门

Description

给出\(n\)个点,\(m\)条边的无向图

每条边有两个权值\(a\)\(b\)

定义一条路径的代价为边中最大的\(a\)值和最大的\(b\)值之和

求从\(1\)\(n\)的最小代价

Solution 

把边按照\(a\)来排序,然后动态维护原树关于\(b\)的最小生成树,考虑用\(lct\)来维护


Code 

#include<bits/stdc++.h>
using namespace std;

int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
    return x*f;
}

#define reg register

const int MN=1.5e5+5,MM=1e5+5,inf=0x3f3f3f3f;

struct LCT{
    int c[MN][2],fa[MN],w[MN],X[MN],st[MN],N,a[MN],b[MN];
    bool rev[MN];
    bool nrt(int x){return c[fa[x]][0]==x||c[fa[x]][1]==x;}
    void Rev(int x){rev[x]^=1;std::swap(c[x][0],c[x][1]);}
    bool get(int x){return c[fa[x]][1]==x;}
    void up(int x)
    {
        X[x]=x;
        if(w[X[c[x][0]]]>w[X[x]]) X[x]=X[c[x][0]];
        if(w[X[c[x][1]]]>w[X[x]]) X[x]=X[c[x][1]];
    }
    inline void down(int x){if(x&&rev[x])Rev(c[x][0]),Rev(c[x][1]),rev[x]=0;}
    void rtt(int x)
    {
        int y=fa[x],z=fa[y],l=get(x),r=l^1;if(nrt(y))c[z][get(y)]=x;fa[x]=z;
        c[y][l]=c[x][r];fa[c[x][r]]=y;c[x][r]=y;fa[y]=x;up(y);
    }
    void Splay(int x)
    {
        int i,top;st[top=1]=x;
        for(i=x;nrt(i);i=fa[i])st[++top]=fa[i];//wrong af
        for(;top>0;--top)down(st[top]);
        for(;nrt(x);rtt(x))
            if(nrt(fa[x])) rtt(get(x)^get(fa[x])?x:fa[x]);
        up(x);
    }
    
    void acs(int x){for(int i=0;x;x=fa[i=x])Splay(x),c[x][1]=i,up(x);}//wrong af
    void mkrt(int x){acs(x);Splay(x);Rev(x);}
    int fdrt(int x){acs(x);Splay(x);for(;c[x][0];down(c[x][0]),x=c[x][0]);Splay(x);return x;}//forget to Splay af
    void link(int x,int y){mkrt(x);fa[x]=y;}
    void cut(int x,int y){mkrt(x);acs(y);Splay(y);c[y][0]=fa[x]=0,up(y);}//forget to up af
    void ins(int x,int y,int B)
    {
        mkrt(x);
        if(fdrt(y)^x){w[++N]=B;link(a[N]=x,N);link(b[N]=y,N);return;}
        mkrt(x);acs(y);Splay(y);
        if(B>=w[X[y]]) return;
        int t=X[y];cut(t,a[t]);cut(t,b[t]);
        w[++N]=B;link(a[N]=x,N);link(b[N]=y,N);
    }
    int que(int x,int y)
    {
        mkrt(x);if(fdrt(y)^x) return inf;
        acs(y);Splay(y);return w[X[y]];
    }
}lct;

struct edge{int u,v,a,b;}e[MM];
inline bool cmp(const edge&x,const edge&y){return x.a<y.a;}
int n,m;

int main()
{
    lct.N=n=read(),m=read();
    reg int i,ans=inf;
    for(i=1;i<=m;++i)
        e[i].u=read(),e[i].v=read(),e[i].a=read(),e[i].b=read();
    std::sort(e+1,e+m+1,cmp);
    for(i=1;i<=m;++i)
    {
        lct.ins(e[i].u,e[i].v,e[i].b);
        ans=min(ans,e[i].a+lct.que(1,n));
    }
    if(ans==inf) ans=-1;
    return 0*printf("%d\n",ans);
}



Blog来自PaperCloud,未经允许,请勿转载,TKS!

转载于:https://www.cnblogs.com/PaperCloud/p/10915501.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值