Sightseeing trip POJ - 1734 -Floyd 最小环

 POJ - 1734 

思路 : Floyd 实质 dp ,优化掉了第三维. dp [ i ] [ j ] [ k ] 指的是前k个点优化后    i  ->  j   的最短路。

所以我们就可以利用这个性质去求 最小环,最小环的构成可以看作是由一条  i -> k    k->j   加上 dp [ i ] [ j ]的最短路

那么我们可以利用  还没有用 k 优化的  i - >j 的最短路 去求,这样保证了 ,这是一个真正的环。

#include<stdio.h>
#include<iostream>
using namespace std;
#define maxn 123
#define inf 1e8
int dis[maxn][maxn],n,key;
int gra[maxn][maxn],m,id;
int u,v,w,pre[maxn][maxn],ans[maxn];
void floyd()
{
    key=inf;
    for(int k=1; k<=n; k++)
    {
        for(int i=1; i<k; i++)
        {
            for(int j=i+1; j<k; j++)
            {
                int tmp=dis[i][j]+gra[i][k]+gra[k][j];
                if(tmp<key)
                {
                    key=tmp;
                    id=0;
                    int p=j;
                    while(p!=i)
                    {
                        ans[id++]=p;
                        p=pre[i][p];
                    }
                    ans[id++]=i;
                    ans[id++]=k;
                }
            }
        }
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
                if(dis[i][j]>dis[i][k]+dis[k][j])
                {
                    dis[i][j]=dis[i][k]+dis[k][j];
                    pre[i][j]=pre[k][j];
                }
    }
}
int main()
{
    while(~scanf("%d%d",&n,&m))
    {
        key=inf;
        for(int i=1; i<=n; i++)
            for(int j=1; j<=n; j++)
            {
                gra[i][j]=dis[i][j]=inf;
                pre[i][j]=i;
            }
        for(int i=0; i<m; i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            gra[u][v]=gra[v][u]=dis[u][v]=dis[v][u]=min(gra[u][v],w);
        }
        floyd();
        if(key==inf)printf("No solution.\n");
        else
        {
            printf("%d",ans[0]);
            for(int i=1; i<id; i++)
                printf(" %d",ans[i]);
            printf("\n");
        }
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/SDUTNING/p/10310808.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值