Analysis by Its History Exercise 2.5

In order to study the convergence of $(1+\frac{1}{n})^n$ to $e$,consider the sequences
\begin{equation}
a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(1+\frac{1}{n})^{n+1}
\end{equation}show that
\begin{equation}
a_1<a_{2}<\cdots<e<\cdots<b_3<b_2<b_1
\end{equation}
and that $b_n-a_n\leq \frac{4}{n}$.

 


Proof:According to this post,$a_1<a_2<\cdots<e$.Then we prove that

\begin{equation}
(1+\frac{1}{n})^{n+1}>(1+\frac{1}{n+1})^{n+2}
\end{equation}
This is simple,because
\begin{equation}
\label{eq:ksdas}
(1+\frac{1}{n+1})^{n+2}=(1+\frac{1}{n+1})^{n+1}(1+\frac{1}{n+1})<(1+\frac{1}{n})^n(1+\frac{1}{n})=(1+\frac{1}{n})^{n+1}
\end{equation}

Then we prove that
\begin{equation}
(1+\frac{1}{n})^{n+1}-(1+\frac{1}{n})^n\leq \frac{4}{n}
\end{equation}

We only need to prove that
\begin{equation}
(1+\frac{1}{n})^n\leq 4
\end{equation}

This is simple,because
\begin{equation}
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots<3
\end{equation}

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/12/3827715.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值