昨天花了一个晚上为《编程之美》,在豆瓣写了一篇书评《迟来的书评和感想──给喜爱编程的朋友》。书评就不转载到这里了,取而代之,在这里介绍书里其中一条问题的另一个解法。这个解法比较简短易读及降低了空间复杂度,或者可以说觉得比较「美」吧。
问题定义
如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义"距离"为两节点之间边的个数。写一个程序求一棵二叉树中相距最远的两个节点之间的距离。
书上的解法
书中对这个问题的分析是很清楚的,我尝试用自己的方式简短覆述。
计算一个二叉树的最大距离有两个情况:
- 情况A: 路径经过左子树的最深节点,通过根节点,再到右子树的最深节点。
- 情况B: 路径不穿过根节点,而是左子树或右子树的最大距离路径,取其大者。
只需要计算这两个情况的路径距离,并取其大者,就是该二叉树的最大距离。
我也想不到更好的分析方法。
但接着,原文的实现就不如上面的清楚 (源码可从这里下载):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | // 数据结构定义 struct NODE { NODE* pLeft; // 左子树 NODE* pRight; // 右子树 int nMaxLeft; // 左子树中的最长距离 int nMaxRight; // 右子树中的最长距离 char chValue; // 该节点的值 };
int nMaxLen = 0;
// 寻找树中最长的两段距离 void FindMaxLen(NODE* pRoot) { // 遍历到叶子节点,返回 if(pRoot == NULL) { return; }
// 如果左子树为空,那么该节点的左边最长距离为0 if(pRoot -> pLeft == NULL) { pRoot -> nMaxLeft = 0; }
// 如果右子树为空,那么该节点的右边最长距离为0 if(pRoot -> pRight == NULL) { pRoot -> nMaxRight = 0; }
// 如果左子树不为空,递归寻找左子树最长距离 if(pRoot -> pLeft != NULL) { FindMaxLen(pRoot -> pLeft); }
// 如果右子树不为空,递归寻找右子树最长距离 if(pRoot -> pRight != NULL) { FindMaxLen(pRoot -> pRight); }
// 计算左子树最长节点距离 if(pRoot -> pLeft != NULL) { int nTempMax = 0; if(pRoot -> pLeft -> nMaxLeft > pRoot -> pLeft -> nMaxRight) { nTempMax = pRoot -> pLeft -> nMaxLeft; } else { nTempMax = pRoot -> pLeft -> nMaxRight; } pRoot -> nMaxLeft = nTempMax + 1; }
// 计算右子树最长节点距离 if(pRoot -> pRight != NULL) { int nTempMax = 0; if(pRoot -> pRight -> nMaxLeft > pRoot -> pRight -> nMaxRight) { nTempMax = pRoot -> pRight -> nMaxLeft; } else { nTempMax = pRoot -> pRight -> nMaxRight; } pRoot -> nMaxRight = nTempMax + 1; }
// 更新最长距离 if(pRoot -> nMaxLeft + pRoot -> nMaxRight > nMaxLen) { nMaxLen = pRoot -> nMaxLeft + pRoot -> nMaxRight; } } |
这段代码有几个缺点:
- 算法加入了侵入式(intrusive)的资料nMaxLeft, nMaxRight
- 使用了全局变量 nMaxLen。每次使用要额外初始化。而且就算是不同的独立资料,也不能在多个线程使用这个函数
- 逻辑比较复杂,也有许多 NULL 相关的条件测试。
我的尝试
我认为这个问题的核心是,情况A 及 B 需要不同的信息: A 需要子树的最大深度,B 需要子树的最大距离。下面的maxdepth就是最大深度,从root根节点-------叶子节点,lhs和rhs子树的maxdistance是子树中的节点之间的最大距离,最后result的maxdistance是最终的最大距离,这个距离的节点可能在不同的子树中,也可能在同一子树中。。。。。
只要函数能在一个节点同时计算及传回这两个信息,代码就可以很简单:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | #include <iostream>
using namespace std;
struct NODE { NODE *pLeft; NODE *pRight; };
struct RESULT { int nMaxDistance; int nMaxDepth; };
RESULT GetMaximumDistance(NODE* root) { if (!root) { RESULT empty = { 0, -1 }; // trick: nMaxDepth is -1 and then caller will plus 1 to balance it as zero. return empty; }
RESULT lhs = GetMaximumDistance(root->pLeft); RESULT rhs = GetMaximumDistance(root->pRight);
RESULT result; result.nMaxDepth = max(lhs.nMaxDepth + 1, rhs.nMaxDepth + 1); result.nMaxDistance = max(max(lhs.nMaxDistance, rhs.nMaxDistance), lhs.nMaxDepth + rhs.nMaxDepth + 2); return result; } |
计算 result 的代码很清楚;nMaxDepth 就是左子树和右子树的深度加1;nMaxDistance 则取 A 和 B 情况的最大值。
为了减少 NULL 的条件测试,进入函数时,如果节点为 NULL,会传回一个 empty 变量。比较奇怪的是 empty.nMaxDepth = -1,目的是让调用方 +1 后,把当前的不存在的 (NULL) 子树当成最大深度为 0。
除了提高了可读性,这个解法的另一个优点是减少了 O(节点数目) 大小的侵入式资料,而改为使用 O(树的最大深度) 大小的栈空间。这个设计使函数完全没有副作用(side effect)。
测试代码
以下也提供测试代码给读者参考 (页数是根据第7次印刷,节点是由上至下、左至右编号):
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 | void Link(NODE* nodes, int parent, int left, int right) { if (left != -1) nodes[parent].pLeft = &nodes[left];
if (right != -1) nodes[parent].pRight = &nodes[right]; }
void main() { // P. 241 Graph 3-12 NODE test1[9] = { 0 }; Link(test1, 0, 1, 2); Link(test1, 1, 3, 4); Link(test1, 2, 5, 6); Link(test1, 3, 7, -1); Link(test1, 5, -1, 8); cout << "test1: " << GetMaximumDistance(&test1[0]).nMaxDistance << endl;
// P. 242 Graph 3-13 left NODE test2[4] = { 0 }; Link(test2, 0, 1, 2); Link(test2, 1, 3, -1); cout << "test2: " << GetMaximumDistance(&test2[0]).nMaxDistance << endl;
// P. 242 Graph 3-13 right NODE test3[9] = { 0 }; Link(test3, 0, -1, 1); Link(test3, 1, 2, 3); Link(test3, 2, 4, -1); Link(test3, 3, 5, 6); Link(test3, 4, 7, -1); Link(test3, 5, -1, 8); cout << "test3: " << GetMaximumDistance(&test3[0]).nMaxDistance << endl;
// P. 242 Graph 3-14 // Same as Graph 3-2, not test
// P. 243 Graph 3-15 NODE test4[9] = { 0 }; Link(test4, 0, 1, 2); Link(test4, 1, 3, 4); Link(test4, 3, 5, 6); Link(test4, 5, 7, -1); Link(test4, 6, -1, 8); cout << "test4: " << GetMaximumDistance(&test4[0]).nMaxDistance << endl; } |
你想到更好的解法吗?
如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义“距离”为两个节点之间边的个数。
写一个程序求一颗二叉树中相距最远的两个节点之间的距离。
如图3-11所示,粗箭头的边表示最长距离:
分析与解法
我们先画几个不同形状的二叉树,(如图3-12所示),看看能否得到一些启示。
从例子中可以看出,相距最远的两个节点,一定是两个叶子节点,或者是一个叶子节点到它的根节点。(为什么?)
解法一
根据相距最远的两个节点一定是叶子节点这个规律,我们可以进一步讨论。
对于任意一个节点,以该节点为根,假设这个根有K个孩子结点,那么相距最远的两个节点U和V之间的路径与这个根节点的关系有两种情况:
1. 若路径经过根Root,则U和V是属于不同子树的,且它们都是该子树中道根节点最远的节点,否则跟它们的距离最远相矛盾。这种情况如图3-13所示:
2. 如果路径不经过Root,那么它们一定属于根的K个子树之一。并且它们也是该子树中相距最远的两个顶点。如图3-14中的节点A:
因此,问题就可以转化为在字数上的解,从而能够利用动态规划来解决。
设第K棵子树中相距最远的两个节点:Uk和Vk,其距离定义为d(Uk,Vk),那么节点Uk或Vk即为子树K到根节点Rk距离最长的节点。不失一般性,我们设Uk为子树K中道根节点Rk距离最长的节点,其到根节点的距离定义为d(Uk,R)。取d(Ui,R)(1<=i<=k)中最大的两个值max1和max2,那么经过根节点R的最长路径为max1+max2+2,所以树R中相距最远的两个点的距离为:max{d(U1,V1),…, d(Uk,Vk),max1+max2+2}。
采用深度优先搜索如图3-15,只需要遍历所有的节点一次,时间复杂度为O(|E|)=O(|V|-1),其中V为点的集合,E为边的集合。
示例代码如下,我们使用二叉树来实现该算法。
//数据结构定义
struct NODE
{
NODE* pLeft; //左孩子
NODE* pRight; //右孩子
int nMaxLeft; //左孩子中的最长距离
int nMaxRight; //右孩子中的最长距离
char chValue; //该节点的值
};
int nMaxLen=0;
//寻找树中最长的两段距离
void FindMaxLen(NODE* pRoot)
{
//遍历到叶子节点,返回
if(pRoot==NULL)
{
return;
}
//如果左子树为空,那么该节点的左边最长距离为0
if(pRoot->pLeft==NULL)
{
pRoot->nMaxLeft=0;
}
//如果右子树为空,那么该节点的右边最长距离为0
if(pRoot->pRight==NULL)
{
pRoot->nMaxRight=0;
}
//如果左子树不为空,递归寻找左子树最长距离
if(pRoot->pLeft!=NULL)
{
FindMaxLen(pRoot->pLeft);
}
//如果右子树不为空,递归寻找右子树最长距离
if(pRoot->pRight!=NULL)
{
FindMaxLen(pRoot->pRight);
}
if(pRoot->pLeft!=NULL)
{
int nTempMax=0;
if(pRoot->pLeft->nMaxLeft > pRoot->pLeft->nMaxRight)
nTempMax=pRoot->pLeft->nMaxLeft;
else
nTempMax=pRoot->pLeft->nMaxRight;
pRoot->nMaxLeft=nTempMax+1;
}
//计算右子树最长节点距离
if(pRoot->pRight!=NULL)
{
int nTempMax=0;
if(pRoot->pRight->nMaxLeft > pRoot->pRight->nMaxRight)
nTempMax= pRoot->pRight->nMaxLeft;
else
nTempMax= pRoot->pRight-> nMaxRight;
pRoot->nMaxRight=nTempMax+1;
}
//更新最长距离
if(pRoot->nMaxLeft+pRoot->nMaxRight > nMaxLen)
nMaxLen=pRoot->nMaxLeft+pRoot->nMaxRight;
}