SHOI2008仙人掌图(tarjan+dp)

Solution

好题啊没的说。

本题需要求出仙人掌的直径,但仙人掌是一个带有简单环的一张图无法直接用树形dp求解,但它有一个好东西就是没有类似环套环的东西,所以我们在处理时就方便了一些。

思路:tarjan找环,对于不在环上的边或点,树形dp求解,对于每个环,dp求解(单调队列优化),

下面主要说一下代码的实现,

void tarjan(int u,int ff)
{
dfn[u]=low[u]=++top;
deep[u]=deep[ff]+1;
for(int i=head[u];i;i=an[i].n)
if(an[i].to!=ff)
{
int v=an[i].to;
if(!dfn[v])
{
fa[v]=u;
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else low[u]=min(low[u],dfn[v]);
if(dfn[u]<low[v])
{
ans=max(ans,f[u]+f[v]+1);
f[u]=max(f[v]+1,f[u]);
}
}
for(int i=head[u];i;i=an[i].n)
if(an[i].to!=ff&&fa[an[i].to]!=u&&dfn[an[i].to]>dfn[u])
ddpp(u,an[i].to);
}

 


这里是tarjan找环的部分,和普通的tarjan不一样的是,由于我们不用缩点并且仙人掌图没有横叉边,所以并不用开栈存点,当dfn[u]<low[v]时,说明这条边不在环上,可以用树形dp,下面用来判断当u
是环上一点并且是环上点中dfn序最小的点,这是就可以进行dp了(这是为了重)。

inline void ddpp(int s,int t)
{
int len=deep[t]-deep[s]+1,te=len;
for(int i=t;i!=s;i=fa[i])
c[te--]=i;
c[1]=s;
for(int i=1;i<=len;++i)
c[i+len]=c[i];
int h=t=1;q[h]=1;
for(int i=2;i<=len*2;++i)
{
while(h<=t&&(i-q[h])>len/2)h++;
if(h<=t)ans=max(ans,f[c[q[h]]]+f[c[i]]+i-q[h]);
while(h<=t&&f[c[q[t]]]-q[t]<=f[c[i]]-i)t--;
q[++t]=i;
} 
for(int i=2;i<=len;++i)
f[s]=max(f[s],f[c[i]]+min(len-i+1,i-1));
}

 


单调队列优化dp,用到了断环成链的技巧,要注意dp结束后要用环上所有点来更新s点,因为除了s点外其他点以后都没有用了,但s点还要向上更新,这步操作相当于把环缩成一个点。

完整代码

#include<iostream>
#include<cstdio>
#define N 50009
#define M 2000009
using namespace std;
int dfn[N],low[N],ans,deep[N],c[N<<1],q[N<<1],f[N],tot,head[N],top,fa[N],u,v,n,m,k;
struct ef
{
int n,to;
}an[M];
inline void add(int u,int v)
{
an[++tot].n=head[u];
an[tot].to=v;
head[u]=tot;
}
inline void ddpp(int s,int t)
{
int len=deep[t]-deep[s]+1,te=len;
for(int i=t;i!=s;i=fa[i])
c[te--]=i;
c[1]=s;
for(int i=1;i<=len;++i)
c[i+len]=c[i];
int h=t=1;q[h]=1;
for(int i=2;i<=len*2;++i)
{
while(h<=t&&(i-q[h])>len/2)h++;
if(h<=t)ans=max(ans,f[c[q[h]]]+f[c[i]]+i-q[h]);
while(h<=t&&f[c[q[t]]]-q[t]<=f[c[i]]-i)t--;
q[++t]=i;
} 
for(int i=2;i<=len;++i)
f[s]=max(f[s],f[c[i]]+min(len-i+1,i-1));
}
void tarjan(int u,int ff)
{
dfn[u]=low[u]=++top;
deep[u]=deep[ff]+1;
for(int i=head[u];i;i=an[i].n)
if(an[i].to!=ff)
{
int v=an[i].to;
if(!dfn[v])
{
fa[v]=u;
tarjan(v,u);
low[u]=min(low[u],low[v]);
}
else low[u]=min(low[u],dfn[v]);
if(dfn[u]<low[v])
{
ans=max(ans,f[u]+f[v]+1);
f[u]=max(f[v]+1,f[u]);
}
}
for(int i=head[u];i;i=an[i].n)
if(an[i].to!=ff&&fa[an[i].to]!=u&&dfn[an[i].to]>dfn[u])
ddpp(u,an[i].to);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
scanf("%d%d",&k,&u);
for(int j=1;j<k;++j)
{
scanf("%d",&v);
add(u,v),add(v,u);
u=v;
}
}
tarjan(1,0);
cout<<ans;
return 0;
}

 

转载于:https://www.cnblogs.com/ZH-comld/p/9389183.html

技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值