B 君的第二题 (hongkong)

B 君的第二题 (hongkong)

题目大意:

一个长度为\(n(n\le2\times10^5)\)的数组,给定一个数\(k(k\le40)\)。用\(a[i][j]\)表示该数组\(i\)次前缀和中第\(j\)项的值,要求支持以下两种操作:

  1. 输入\(x,y\),将\(a[0][x]\)加上\(y\)
  2. 输入\(x\),求\(a[k][x]\)的值。

思路:

题目询问的实际上就是\(\sum_{i=1}^x\binom{x-i+k-1}{k-1}a[0][i]\)

我们可以得到
\[ \begin{align*} &\sum_{i=1}^x\binom{x-i+k-1}{k-1}a[0][i]\\ =&\sum_{i=1}^x\sum_{j=0}^{k-1}\binom xj\binom{k-i-1}{k-j-1}a[0][i]\\ =&\sum_{j=0}^{k-1}\binom xj\left(\sum_{i=1}^x\binom{k-i-1}{k-j-1}a[0][i]\right) \end{align*} \]
用树状数组维护即可。

时间复杂度\(\mathcal O(mk\log n)\)

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
    register char ch;
    register bool neg=false;
    while(!isdigit(ch=getchar())) neg|=ch=='-';
    register int x=ch^'0';
    while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
    return neg?-x:x;
}
using int64=long long;
constexpr int N=4e5+1,K=41,mod=1e9+7;
int n,m,k,fac[N],ifac[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
    if(!b) {
        x=1,y=0;
        return;
    }
    exgcd(b,a%b,y,x);
    y-=a/b*x;
}
inline int inv(const int &x) {
    int ret,tmp;
    exgcd(x,mod,ret,tmp);
    return (ret%mod+mod)%mod;
}
inline int C(const int &n,const int &m) {
    if(n<m) return 0;
    return (int64)fac[n]*ifac[m]%mod*ifac[n-m]%mod;
}
class FenwickTree {
    private:
        int val[K][N];
        int lowbit(const int &x) const {
            return x&-x;
        }
        int query(const int &p,const int &v) const {
            int ret=0;
            if(v==0) return val[k][p];
            for(register int i=1;i<=k;i++) {
                (ret+=(int64)val[i][p]*C(v+k-i-1,v-1)%mod)%=mod;
            }
            return ret;
        }
    public:
        int query(const int &p) const {
            int ret=0;
            for(register int i=p;i;i-=lowbit(i)) {
                (ret+=query(i,p-i))%=mod;
            }
            return ret;
        }
        void modify(const int &p,const int &x) {
            for(register int i=1;i<=k;i++) {
                for(register int j=p;j<=n;j+=lowbit(j)) {
                    (val[i][j]+=(int64)C(i+j-p-1,i-1)*x%mod)%=mod;
                }
            }
        }
};
FenwickTree t;
int main() {
    n=getint(),m=getint(),k=getint();
    for(register int i=fac[0]=1;i<=n*2;i++) {
        fac[i]=(int64)fac[i-1]*i%mod;
    }
    ifac[n*2]=inv(fac[n*2]);
    for(register int i=n*2;i;i--) {
        ifac[i-1]=(int64)ifac[i]*i%mod;
    }
    for(register int i=0;i<m;i++) {
        const int opt=getint();
        if(opt==0) {
            const int x=getint(),y=getint();
            t.modify(x,y); 
        }
        if(opt==1) {
            printf("%d\n",t.query(getint()));
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/skylee03/p/9277960.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值