题意:
给定n个点 q个询问
以下n-1行给出树边,点有黑或白色。初始化为白色
以下q行:
询问有2种:
1、 0 x 把x点黑变白,白变黑
2、1 x 询问Path(1,x)路径上第一个黑点的点标, 若不存在黑点则输出-1
思路:
lct裸题
#include <iostream>
#include <fstream>
#include <string>
#include <time.h>
#include <vector>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
using namespace std;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ?
0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if (x>9) pt(x / 10); putchar(x % 10 + '0'); } typedef long long ll; typedef pair<int, int> pii; const int N = 30005; const int inf = 10000000; struct Node *null; struct Node{ Node *fa, *ch[2]; int size; int val, ma, sum, id; bool rev; inline void put(){ printf("%d:id, %d,%d,%d (%d,%d) fa:%d \n", id, val, ma, sum, ch[0]->id, ch[1]->id, fa->id); } inline void clear(int _val, int _id){ fa = ch[0] = ch[1] = null; size = 1; rev = 0; id = _id; val = ma = sum = _val; } inline void push_up(){ size = 1 + ch[0]->size + ch[1]->size; sum = ma = val; if (ch[0] != null) { sum += ch[0]->sum; ma = max(ma, ch[0]->ma); } if (ch[1] != null){ sum += ch[1]->sum; ma = max(ma, ch[1]->ma); } } inline void push_down(){ if (rev){ ch[0]->flip(); ch[1]->flip(); rev = 0; } } inline void setc(Node *p, int d){ ch[d] = p; p->fa = this; } inline bool d(){ return fa->ch[1] == this; } inline bool isroot(){ return fa == null || fa->ch[0] != this && fa->ch[1] != this; } inline void flip(){ if (this == null)return; swap(ch[0], ch[1]); rev ^= 1; } inline void go(){//从链头開始更新到this if (!isroot())fa->go(); push_down(); } inline void rot(){ Node *f = fa, *ff = fa->fa; int c = d(), cc = fa->d(); f->setc(ch[!c], c); this->setc(f, !c); if (ff->ch[cc] == f)ff->setc(this, cc); else this->fa = ff; f->push_up(); } inline Node*splay(){ go(); while (!isroot()){ if (!fa->isroot()) d() == fa->d() ? fa->rot() : rot(); rot(); } push_up(); return this; } inline Node* access(){//access后this就是到根的一条splay,而且this已经是这个splay的根了 for (Node *p = this, *q = null; p != null; q = p, p = p->fa){ p->splay()->setc(q, 1); p->push_up(); } return splay(); } inline Node* find_root(){ Node *x; for (x = access(); x->push_down(), x->ch[0] != null; x = x->ch[0]); return x; } void make_root(){ access()->flip(); } void cut(){//把这个点的子树脱离出去 access(); ch[0]->fa = null; ch[0] = null; push_up(); } void cut(Node *x){ if (this == x || find_root() != x->find_root())return; else { x->make_root(); cut(); } } void link(Node *x){ if (find_root() == x->find_root())return; else { make_root(); fa = x; } } }; Node pool[N], *tail; Node *node[N]; int n, q; void debug(Node *x){ if (x == null)return; x->put(); debug(x->ch[0]); debug(x->ch[1]); } inline void change(Node* x){ x->access(); x->val ^= 1; x->push_up(); } inline int ask(Node* x){ node[1]->make_root(); x->access(); node[1]->splay(); // for (int i = 1; i <= n; i++)debug(node[i]), putchar('\n'); Node *r = node[1]; if (r->sum == 0)return -1; while (true){ if (r->ch[0]->sum == 0 && r->val)return r->id; r = r->ch[r->ch[0]->sum==0]; } } struct Edge{ int from, to, nex; }edge[N << 1]; int head[N], edgenum; void add(int u, int v){ Edge E = { u, v, head[u] }; edge[edgenum] = E; head[u] = edgenum++; } void dfs(int u, int fa){ for (int i = head[u]; ~i; i = edge[i].nex){ int v = edge[i].to; if (v == fa)continue; dfs(v, u); node[v]->push_up(); node[v]->fa = node[u]; } } int main(){ while (cin>>n>>q){ memset(head, -1, sizeof head); edgenum = 0; tail = pool; null = tail++; null->clear(0, 0); null->size = 0; null->sum = 0; for (int i = 1; i <= n; i++) { node[i] = tail++; node[i]->clear(0, i); } for (int i = 1, u, v; i < n; i++){ rd(u); rd(v); add(u, v); add(v, u); } dfs(1, 1); int u, v; while (q--){ rd(u); rd(v); if (u == 0)change(node[v]); else pt(ask(node[v])), putchar('\n'); } } return 0; } /* 9 8 1 2 1 3 2 4 2 9 5 9 7 9 8 9 6 8 1 3 0 8 1 6 1 7 0 2 1 9 0 2 1 9 */