题意:价值为1,2,3,4,5,6. 分别有n[1],n[2],n[3],n[4],n[5],n[6]个。求能否找到满足价值刚好是所有的一半的方案。
思路:简单的多重背包,我建议多重背包都用二进制拆分优化下........
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[200000],w[200000];
int main()
{
int t[7],text=0;
while(1)
{
int sum=0;
for(int i=1;i<=6;i++)
{
scanf("%d",&t[i]);
sum+=i*t[i];
}
if(sum==0)
break;
printf("Collection #%d:\n",++text);
if(sum%2==1)
{
printf("Can't be divided.\n\n");
continue;
}
sum/=2;
int cnt=0;
for(int i=1;i<=6;i++)
{
int k=1;
while(t[i]-k>0)
{
w[cnt++]=k*i;
t[i]-=k;
k*=2;
}
w[cnt++]=t[i]*i;
}
memset(dp,0,sizeof(dp));
for(int i=0;i<cnt;i++)
{
for(int j=sum;j>=w[i];j--)
if(dp[j]<dp[j-w[i]]+w[i])
dp[j]=dp[j-w[i]]+w[i];
}
if(dp[sum]==sum)
printf("Can be divided.\n");
else
printf("Can't be divided.\n");
printf("\n");
}
return 0;
}