每日一道算法题 - KaprekarsConstant(hard-2)

虽然都是很简单的算法,每个都只需5分钟左右,但写起来总会遇到不同的小问题,希望大家能跟我一起每天进步一点点。
更多的小算法练习,可以查看我的文章。

规则

Using the JavaScript language, have the function ChessboardTraveling(str) read str which will be a string consisting of the location of a space on a standard 8x8 chess board with no pieces on the board along with another space on the chess board. The structure of str will be the following: "(x y)(a b)" where (x y) represents the position you are currently on with x and y ranging from 1 to 8 and (a b) represents some other space on the chess board with a and b also ranging from 1 to 8 where a > x and b > y. Your program should determine how many ways there are of traveling from (x y) on the board to (a b) moving only up and to the right. For example: if str is (1 1)(2 2) then your program should output 2 because there are only two possible ways to travel from space (1 1) on a chessboard to space (2 2) while making only moves up and to the right.

使用JavaScript语言,使用ChessboardTraveling(str)函数读取str ,它将是一个字符串,指的是8x8棋盘上点的位置。str的结构如下:“(x y)(a b)”,其中(x y)代表你当前所处的位置x和y的范围是1到8,而(a b)代表棋盘上的其他点的位置,a和b也在1到8的范围内,其中a> x和b> y。您的程序应该确定从( xy)在棋盘上移动到(a b)并且移动方式只能是向上和向右移动的情况下,一共有多少条路径。
例如:如果str是(1 1)(2 2)然后你的程序应该输出2,因为只有两种可能的方式从棋盘上的(1 1)点移动到棋盘上的(2 2)点。

function ChessboardTraveling(str) { 

  // code goes here  
  return str;    
} 

测试用例

Input:"(1 1)(3 3)"
Output:6

Input:"(1 1)(2 2)"
Output:2

Input:"(2 2)(4 3)"
Output:3

my code

function ChessboardTraveling(str) { 
  var strArr = str.match(/([0-9]+\s+[0-9]+)/g)
  var minArr = strArr[0].split(' ')
  var maxArr = strArr[1].split(' ')
  var xDiff = maxArr[0] - minArr[0]
  var yDiff = maxArr[1] - minArr[1]

  return Steps(xDiff, yDiff);    
}

function Steps(x, y) {
  if (x < 0 || y < 0)
    return 0;
  if (x == 0 && y == 1)
    return 1;
  if (x == 1 && y == 0)
    return 1;

  return Steps(x - 1, y) + Steps(x, y - 1)
}

console.log(ChessboardTraveling("(1 1)(3 3)"));

other code

暂时没找到其他合适的解决方式,如果你们有自己的解决方法,请留言~

思路

个人思路:

  1. 8*8在本题中只做了数值的大小限制,无其他作用
  2. 把最小点(如(2 2))作为方格的最左下角,最大点(如 (4 3))作为方格的右上角,构成一个3*2的方格,实质上就是求从方格最左下方到方格最右上方有多少条路径。
  3. 使用递归函数去解决,需要清楚判断的临界点,比如(x === 0 && y === 1)(x === 1 && y === 0)时,只有一种选择。
另一种思路:
使用组合计算
(1 1)和(3,3),需要往上走2步,往右走2步,一共要走4步,C(2,4)= 6
(2 2)和(4,3),需要往上走1步,往右走2步,一共要走3步,C(1,3)= 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值