论二分图的可行边与必须边。
考虑用dinic增广之后的图,一些是必要的割边,一些是可行的割边。
我们首先求出一组可行的最大匹配,那么这些变都是可行的。
然后我们求一遍强连通分量。
如果 scc[u]!=scc[v] 并且在最大匹配中 那么它是必须的,否则就是可行的。
如果 scc[u]==scc[v] 并且不在最大匹配中 那么它是可行的。
题目中已经给出了一个最大匹配,只需要建图Tarjan即可。
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define mp make_pair
map <string,int> ma,mb;
string sa,sb;
int n,m,ta,tb;
#define maxn 100005
int h[maxn],to[maxn],ne[maxn],en=0,s=0,t;
void add(int a,int b)
{to[en]=b;ne[en]=h[a];h[a]=en++;}
int dfn[maxn],low[maxn],sta[maxn],top=0,idx,vcnt,bel[maxn],ins[maxn];
void tarjan(int o)
{
dfn[o]=low[o]=++idx;
sta[++top]=o;ins[o]=1;
for (int i=h[o];i>=0;i=ne[i])
if (!dfn[to[i]]) tarjan(to[i]),low[o]=min(low[o],low[to[i]]);
else if (ins[to[i]]) low[o]=min(low[o],dfn[to[i]]);
if (low[o]==dfn[o])
{
int x=-1;
vcnt++;
while (x!=o)
{
x=sta[top--];
bel[x]=vcnt;
ins[x]=0;
}
}
}
int main()
{
memset(h,-1,sizeof h);
scanf("%d",&n);
t=2*n+1;
F(i,1,n)
{
cin>>sa>>sb;
ma[sa]=++ta,mb[sb]=++tb;
add(i+n,i),add(i,s),add(t,i+n);
}
scanf("%d",&m);
F(i,1,m)
{
cin>>sa>>sb;
int l=ma[sa],r=mb[sb]+n;
add(l,r);
}
F(i,0,t) if (!dfn[i]) tarjan(i);
F(i,1,n) if (bel[i]==bel[i+n]) printf("Unsafe\n");
else printf("Safe\n");
}