洛谷P3622 动物园

题意:给定一个n个元素的圈,m个条件。满足一个条件需要选某些元素或不选另一些元素。

问最多能满足多少条件。每个条件所关联的元素,最远的两个距离不会超过5。

解:想了半天......

首先能想到断环成链DP。

然后某个时刻灵光一闪,突然发现可以状压最近的5个位置......这样枚举开始位置做32次DP就行了!

实现的时候发现只要枚举16种开始情况,状压4个位置...

转移就是考虑下一个位置选/不选。

注意细节......为什么有人20行A题,我写了160行呀...

  1 #include <cstdio>
  2 #include <cstring>
  3 #include <vector>
  4 #include <algorithm>
  5 
  6 const int N = 10010;
  7 
  8 struct Node {
  9     int p, fear, like;
 10     int a[5]; // 0 none  1 fear  2 like
 11 }node[5 * N];
 12 
 13 int f[N][16], n;
 14 std::vector<int> v[N];
 15 
 16 inline void exmax(int &a, int b) {
 17     a < b ? a = b : 0;
 18     return;
 19 }
 20 
 21 inline void out(int x, int tag) {
 22     printf(" ");
 23     for(int i = 0; i < tag; i++) {
 24         printf("%d", (x >> i) & 1);
 25     }
 26     printf(" ");
 27     return;
 28 }
 29 
 30 inline int check(Node x, int s) {
 31     for(int i = 0; i < 5; i++) {
 32         if(x.a[i] == 1 && ((s >> i) & 1)) {
 33             return 1;
 34         }
 35         if(x.a[i] == 2 && (((s >> i) & 1) == 0)) {
 36             return 1;
 37         }
 38     }
 39     return 0;
 40 }
 41 
 42 int main() {
 43 
 44     int m;
 45     scanf("%d%d", &n, &m);
 46     for(int i = 1, x; i <= m; i++) {
 47         scanf("%d%d%d", &node[i].p, &node[i].fear, &node[i].like);
 48         node[i].p += 4;
 49         while(node[i].p > n) {
 50             node[i].p -= n;
 51         }
 52         for(int j = 1; j <= node[i].fear; j++) {
 53             scanf("%d", &x);
 54             for(int k = 4, now = node[i].p + 1; k >= 0; k--) {
 55                 now--;
 56                 if(!now) {
 57                     now = n;
 58                 }
 59                 if(now == x) {
 60                     node[i].a[k] = 1;
 61                     break;
 62                 }
 63             }
 64         }
 65         for(int j = 1; j <= node[i].like; j++) {
 66             scanf("%d", &x);
 67             for(int k = 4, now = node[i].p + 1; k >= 0; k--) {
 68                 now--;
 69                 if(!now) {
 70                     now = n;
 71                 }
 72                 if(now == x) {
 73                     node[i].a[k] = 2;
 74                     break;
 75                 }
 76             }
 77         }
 78         v[node[i].p].push_back(i);
 79     }
 80     /// input
 81     int ans = 0;
 82     /// -----
 83     /// 01234
 84     for(int op = 0; op < 16; op++) { /// first four
 85         memset(f, 0, sizeof(f));
 86         for(int s = 0; s < 16; s++) {
 87             if(s != op) {
 88                 f[4][s] = -1;
 89             }
 90         }
 91 
 92         for(int i = 4; i < n; i++) {
 93             for(int s = 0; s < 16; s++) {
 94                 if(f[i][s] == -1) {
 95                     continue;
 96                 }
 97                 /// f[i][s] -> f[i + 1][t]
 98                 
 99                 int t = s >> 1, temp = f[i][s]; /// put 0  don't move
100                 for(int j = 0; j < v[i + 1].size(); j++) {
101                     /// node[v[i + 1][j]]  and  s
102                     temp += check(node[v[i + 1][j]], s);
103                 }
104                 exmax(f[i + 1][t], temp);
105                 // -------------------------------------
106                 t = t | (1 << 3); /// put 1  move
107                 temp = f[i][s];
108                 for(int j = 0; j < v[i + 1].size(); j++) {
109                     temp += check(node[v[i + 1][j]], s | (1 << 4));
110                 }
111                 exmax(f[i + 1][t], temp);
112             }
113         }
114         for(int s = 0; s < 16; s++) {
115             /// f[n][s]
116             int temp = f[n][s], now = s << 1;
117             for(int i = 0; i < 4; i++) {
118                 now = (now >> 1) + (((op >> i) & 1) << 4);
119                 for(int j = 0; j < v[i + 1].size(); j++) {
120                     temp += check(node[v[i + 1][j]], now);
121                 }
122             }
123             exmax(ans, temp);
124         }
125     }
126     printf("%d\n", ans);
127     return 0;
128 }
AC代码

 

转载于:https://www.cnblogs.com/huyufeifei/p/10383076.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值