转化与划归思想

一、为什么需要转化与划归思想?

待编辑。

二、哪些素材都可能涉及转化与划归思想?

待编辑。

  • 数形之间的相互转化,

  • 未知向已知的转化,

  • 模型向模型的转化

  • 复数问题实数化,

  • 立体问题平面化,

  • 实数问题有理数化,

  • 视角上的转化 比如证明\(AB\perp CD\)需要转化为\(CD\perp AB\),以及\(V_{A-BCD}=V_{D-ABC}\),即等体积法,等面积法。

  • 维度上的转化,

三、典例剖析:

例1【2018福建龙岩市高三质检】若不等式\((x-a)^2+(x-lna)^2>m\)对任意\(x\in R\)\(a\in (0,+\infty)\)恒成立,则实数\(m\)的取值范围是______________。

分析:检索自己的数学知识储备,我们能发现,不等式的左端的结构和平面内两点间的距离公式非常接近,

故我们主动联想,向两点间的距离公式的几何意义做靠拢,从而转化为求两点间的距离的最小值的平方。

解法1:表达式\((x-a)^2+(x-lna)^2\)的几何意义是直线\(y=x\)上的点\((x,x)\)到曲线\(y=lnx\)上的点\((a,lna)\)距离的平方,

如果令\(f(x)=(x-a)^2+(x-lna)^2\),则由\(m<f(x)\)对任意\(x\in R\)\(a\in (0,+\infty)\)恒成立,

即需要我们求\(f(x)\)的最小值;这样题目首先转化为以下的题目:

\(\fbox{例1-相关}\)直线\(y=x\)上的动点为\(P\),函数\(y=lnx\)上的动点是\(Q\),求\(|PQ|\)的最小值。

【等价题目】直线\(y=x\)上的点为\(P(x,x)\),函数\(y=lnx\)上的点是\(Q(a,lna)\),求\(\sqrt{(x-a)^2+(x-lna)^2}\)的最小值。

设和直线\(y=x\)平行且和函数\(y=lnx\)相切的直线为\(y=x+m\)

切点为\(P_0(x_0,y_0)\),则有

\(\begin{cases} y_0=x_{0}+ m \\ y_0=lnx_0 \\ f'(x_0)=\cfrac{1}{x_0}=1\end{cases}\)

从而解得\(x_0=1,y_0=0,m=-1\)

所以所求的点点距的最小值,就转化为切点\(P_0(1,0)\)到直线\(y=x\)的点线距,

或者两条直线\(y=x\)\(y=x-1\)的线线距了。

此时\(|PQ|_{min}=\cfrac{\sqrt{2}}{2}\)

由上述题目可知,\(f(x)_{min}=(\cfrac{\sqrt{2}}{2})^2=\cfrac{1}{2}\)

故实数\(m\)的取值范围是\(m<\cfrac{1}{2}\),即\(m\in (-\infty,\cfrac{1}{2})\)

例2【2019届宝鸡市高三理科数学质量检测一第12题】设函数\(f(x)=(x-a)^2+(lnx^2-2a)^2\),其中\(x>0\)\(a\in R\),存在\(x_0\),使得\(f(x_0)\leq \cfrac{4}{5}\)成立,则实数\(a\)等于【】

$A.1$ $B.\cfrac{1}{5}$ $C.\cfrac{2}{5}$ $D.\cfrac{1}{2}$

分析:由于题目告诉我们,存在\(x_0\),使得\(f(x_0)\leq \cfrac{4}{5}\)成立,

则需要我们求解函数\(f(x)\)的最小值,最容易想到的就是利用导数求解函数的最小值,

这个最小值中会含有参数\(a\),让其小于等于\(\cfrac{4}{5}\),求解即可。

但是观察函数的特征,你会感觉这可能不是一个很好的选择。

那么有没有更好的选择呢,详细观察所给的函数结构特征,发现其和平面内任意两点见的距离公式很接近,

所以我们可以这样考虑:

函数\(f(x)\)的最小值应该是点\((x,lnx^2)\)和点\((a,2a)\)之间的最小距离的平方,再次转化为

函数\(y=g(x)=lnx^2=2lnx\)上的动点\((x,y)\)与函数\(y=h(x)=2x\)上的动点\((m,n)\)之间的最小距离的平方,

从而问题转化为先求解曲线\(y=2lnx\)上的动点到直线\(y=2x\)的最小距离了。

利用平行线法,设直线\(y=2x+m\)与曲线相切于点\((x_0,y_0)\)

则有\(g'(x_0)=\cfrac{2}{x_0}=2\),解得\(x_0=1\)

代入\(y=2lnx\),得到\(y_0=0\),即切点为\((1,0)\)点,

代入\(y=2x+m\),得到\(m=-2\)

即切线为\(y=2x-2\),此时函数\(f(x)\)的最小值,也就是曲线上的点\((1,0)\)到直线\(y=2x\)的点线距的平方,

也是两条直线\(y=2x\)\(y=2x-2\)之间的线线距的平方,其中线线距\(d=\cfrac{|2|}{\sqrt{2^2+1^2}}=\cfrac{2}{\sqrt{5}}\)

\(d^2=\cfrac{4}{5}\),说明这样的\(x_0\)是存在的且唯一的,\(x_0=1\)

那么\(a\)为多少?该如何求解呢?由于\(a\)是使得函数\(f(x)\)取得最小值的参数,

即本题目中应该是点\((1,0)\)在直线\(y=2x\)上的垂足的横坐标。

由于过点\((1,0)\)\(y=2x\)垂直的直线为\(y-0=-\cfrac{1}{2}(x-1)\)

联立\(\left\{\begin{array}{l}{y=2x}\\{y=-\cfrac{1}{2}(x-1)}\end{array}\right.\),解得\(x=\cfrac{1}{5}\)

\(a=\cfrac{1}{5}\),故选\(B\)

例3甲、乙两人约定某天晚上\(7:00 \sim 8:00\)之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待甲即可离去,那么两个人能会面的概率是【】

$A.\cfrac{1}{3}$ $B.\cfrac{1}{8}$ $C.\cfrac{3}{8}$ $D.\cfrac{5}{9}$

992978-20180409201934664-1747721141.png

分析:如右图所示,令\(7:00\)对应0,\(8:00\)对应1,设甲乙两人到达的时刻分别为\(x,y\),则其相当于在区间\([0,1]\)上取值一样,“约定甲早到应等乙半小时”即\(y-x\leq \cfrac{1}{2}\),即\(x-y \ge -\cfrac{1}{2}\),“乙早到无需等待甲即可离去”意味着\(x-y>0\),那么两人会面应该满足条件\(-\cfrac{1}{2}\leq x-y \leq 0\)

即右图中的阴影部分,所以所求的概率为\(P=1-\cfrac{\cfrac{1}{2}\times \cfrac{1}{2}\times \cfrac{1}{2}+\cfrac{1}{2}\times 1 \times 1}{1}=\cfrac{3}{8}\).

本题目的难点有以下三个:

①到底该是用一维来刻画还是用二维来刻画;两个刻画时刻的数轴的呈现方式,到底该平行还是垂直,还是斜交。

②关于时刻的转化,\(7:00\)对应数值\(0\)\(8:00\)对应数值\(1\),则\(7:00 \sim 8:00\)任一时刻的到达对应区间[0,1]的任意取值。半小时对应数字\(\cfrac{1}{2}\).

③将甲、乙两人会面的文字条件转化为数学语言,即线性不等式组。

【解后反思】①本题目通过设置两个变量\(x\)\(y\),将已知的文字语言转化为\(x\)\(y\)所满足的不等式(数学语言),进而转化为坐标平面内的点\((x,y)\)的相关约束条件,从而把时间这个长度问题转化为平面图形的二维面积问题,进而转化为面积型几何概型。

②若题目中涉及三个相互独立的变量,则需将其转化为空间几何体的体积问题加以求解。

转载于:https://www.cnblogs.com/wanghai0666/p/10262380.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值