一个简要的Lambda形式理论基础

这里跳过文字歪歪,直接来形式主义:

<expr> ::= <identifier>

<expr> ::= (λ <identifier> . <expr>)

<expr> ::= (<expr> <expr>)

lambda理论只有这三种表达式。即自由变元、定义式与应用式。

关于自由变量的统计:

第一个直接是自由变元;

第二个中非绑定的是自由变元;

第三个是简单地把应用式和被应用式中的自由变元加起来。

注意二式是计算自由变元的关键(因为1式与3式只是简单的算术)。

且如果不用括号的话,λ是右结合(贪婪的),应用式则是左结合的。

单就绑定来说,1式与3式都不具有产生绑定的能力。只有2式具有产生绑定的能力。另外,只有1式与2式拥有产生自由变量的能力。

换句话说,3式也不产生绑定也不产生自由变量。

α-变换 

  λ V. E == λ W. E[V/W] 

要求:W不是E中的自由出现且不会在E中被绑定。被换掉的是V的自由出现不是绑定出现。

β-消解 
((λ V. E ) E' ) == E [V/E' ]
要求:所有E'中的自由变量在消解后仍然自由。



转载于:https://my.oschina.net/digerl/blog/214810

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值