AtomicInteger 原子类的作用
-
多线程操作,Synchronized 性能开销太大
count++
并不是原子操作。因为count++
需要经过读取-修改-写入
三个步骤。-
count++
并不是原子操作。因为count++
需要经过读取-修改-写入
三个步骤。 -
可以这样做:
public synchronized void increase() { count++; }
- Synchronized锁是独占的,意味着如果有别的线程在执行,当前线程只能是等待!
-
-
用CAS操作
-
CAS有3个操作数:
- 内存值V
- 旧的预期值A
- 要修改的新值B
- 当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值(A和内存值V相同时,将内存值V修改为B),而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试(或者什么都不做)。
-
我们可以发现CAS有两种情况:
- 如果内存值V和我们的预期值A相等,则将内存值修改为B,操作成功!
-
如果内存值V和我们的预期值A不相等,一般也有两种情况:
- 重试(自旋)
- 什么都不做
-
理解CAS的核心就是:
CAS是原子性的,虽然你可能看到比较后再修改(compare and swap)觉得会有两个操作,但终究是原子性的!
-
-
原子变量类在
java.util.concurrent.atomic
包下,总体来看有这么多个-
基本类型:
- AtomicBoolean:布尔型
- AtomicInteger:整型
- AtomicLong:长整型
-
数组:
- AtomicIntegerArray:数组里的整型
- AtomicLongArray:数组里的长整型
- AtomicReferenceArray:数组里的引用类型
-
引用类型:
- AtomicReference:引用类型
- AtomicStampedReference:带有版本号的引用类型
- AtomicMarkableReference:带有标记位的引用类型
-
对象的属性
- AtomicIntegerFieldUpdater:对象的属性是整型
- AtomicLongFieldUpdater:对象的属性是长整型
- AtomicReferenceFieldUpdater:对象的属性是引用类型
-
JDK8新增DoubleAccumulator、LongAccumulator、DoubleAdder、LongAdder
- 是对AtomicLong等类的改进。比如LongAccumulator与LongAdder在高并发环境下比AtomicLong更高效。
- Atomic包里的类基本都是使用Unsafe实现的包装类
-
Unsafe里边有几个我们喜欢的方法(CAS):
// 第一和第二个参数代表对象的实例以及地址,第三个参数代表期望值,第四个参数代表更新值 public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5); public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5); public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);
-
-
原子变量类使用
class Count{ // 共享变量(使用AtomicInteger来替代Synchronized锁) private AtomicInteger count = new AtomicInteger(0); public Integer getCount() { return count.get(); } public void increase() { count.incrementAndGet(); } }
-
原子类的ABA问题
-
下面的操作都可以正常执行完的,这样会发生什么问题呢??线程C无法得知线程A和线程B修改过的count值,这样是有风险的。
- 现在我有一个变量
count=10
,现在有三个线程,分别为A、B、C - 线程A和线程C同时读到count变量,所以线程A和线程C的内存值和预期值都为10
- 此时线程A使用CAS将count值修改成100
- 修改完后,就在这时,线程B进来了,读取得到count的值为100(内存值和预期值都是100),将count值修改成10
- 线程C拿到执行权,发现内存值是10,预期值也是10,将count值修改成11
- 现在我有一个变量
-
-
解决ABA问题
要解决ABA的问题,我们可以使用JDK给我们提供的AtomicStampedReference和AtomicMarkableReference类。
简单来说就是在给为这个对象提供了一个版本,并且这个版本如果被修改了,是自动更新的。
原理大概就是:维护了一个Pair对象,Pair对象存储我们的对象引用和一个stamp值。每次CAS比较的是两个Pair对象
-
LongAdder 性能比 AtomicLong 要好
- 使用AtomicLong时,在高并发下大量线程会同时去竞争更新同一个原子变量,但是由于同时只有一个线程的CAS会成功,所以其他线程会不断尝试自旋尝试CAS操作,这会浪费不少的CPU资源。
-
而LongAdder可以概括成这样:内部核心数据value分离成一个数组(Cell),每个线程访问时,通过哈希等算法映射到其中一个数字进行计数,而最终的计数结果,则为这个数组的求和累加。
- 简单来说就是将一个值分散成多个值,在并发的时候就可以分散压力,性能有所提高。